Product Brief

Intel® Parallel Amplifier

Intel

Parallel

- T AmpPhREEE

"l was delighted when it
pointed me to the right
source line that was taking
much of the time. | made the
change, and voila, our app is
now almost 10 times faster.”

Anonymous beta tester describing
Intel® Parallel Amplifier

Optimize Performance and Scalability

Intel® Parallel Amplifier makes it simple to quickly find multicore performance
bottlenecks without needing to know the processor architecture or assembly
code, Intel Parallel Amplifier takes away the guesswork and analyzes
performance behavior in Windows* applications, providing quick access to
scaling information for faster and improved decision making.

Fine-tune for optimal performance, ensuring cores are fully exploited and new
capabilities are supported.

= Make significant performance gains that impact
customer satisfaction

= Increase application headroom for richer feature sets
and next-gen innovation

= Find performance problems quickly and easily

= Scale applications for multicore

aralle - ual _—— Choose analysis type
Fle Edit View Project Buid Debug Tools Test Window Community Help
Ho R~ N IR R R R A=A N S ,
T T — — i View call stack bottom-up or top-down
' r01hs ~ ¥ | Call Stack - o x
5[Hotspos:Boftom up By ToTepots: Top down Treo| e _— C(all stacks for selected function
- — 2 selected stacks ./
F“_”;"‘t’; = ‘ Module CPUTime + Viewing 1 1of2 B
ottom-Lip Tree ' Contribution of the current cal stack . .
cPuTIne —— CPU times for hot functions
GenScanline <-Paintline <- GenDisplay <- GetMod| Fractal.exe 1.571s (I 7S OF selection (1.571s of 1.991s)
Paintiine <- GenDisplay <- GetModuleFileNameA | Fractal.exe 0.420s [
Fractal.exe!GenColors - fractal.cpp [&
HKiFastSystemCallRet ntdl.dll 0.5665 (D . .
ENtWaitForSingleObject ntdl.di 0.0365 | E:z::z::s::ﬁ!“";!;‘:;cm q /—| Total elapsed and CPU time
®Paintline Fractal.exe 0.000s | Fractal. exelGenDisplay - fractal.cop . [«
SxJsolutio... |[ZProper... g;i%tack Fil |
— ——~ .axj— Filterresults
-
Selected: 1.991s e
Sl B e w [l i 2 a0
r [Filter: 100% s shown | Modue:| [Al] [se] Thread: | fai 04 = || Logical CPU Count: 2
Ready

. J
Hotspot Analysis: Where is my app spending time?

Find the functions in your application that consume most of the time. This is where you'll want to tune or add parallelism to make your program
faster. Intel Parallel Amplifier also shows the stack, so you know how the function is being called. For functions with multiple calling sequences,
this lets you see if one of the call stacks is hotter than the others.

4 N

& Parallel Amplifier - Microsoft Visual Studio =Ja Click to go to the next hottest spot
Fle Edit View Project Build Debug Took Test Window Community Help . . .
P e @ 6 e e D L b Release - Win32 % in this function
Profile Hotspots -Whereismyp - B 11 3¢ ¢ Compare @ M
“roths| - x |[Callstack -1 x Ll : ;
roths x | i Click to open the file editor at
21| Hotspots: Bottom.up | &ywoTspots: Top-down Tree| [B) Fractal.cpp } his | .
— 2 selected stacks this location
mmuS@ C—— \newmg<11ufzb
Line Source CPUTIme %] ¢ Contribution of the aumrent call stack
174 for (unsigned int x=0; x < imageWidth; x++ CPU Time . . .
s : | _—— When you double click a function in
176 c.real = minresl + x*realScale; 0.016s |) | [Fractal.exe/GenColose—trattal cpp . .
7) | EcaciebeeTanscantine - foctelc... any analysis, it opens the source to the
;g ‘_"‘;’('“;;1“;‘“1:“"”;_*)1 :"; 1.55% [@ ¢ il cxeiPaintline - fractal. cop: 226
if(glolerDepth == 32 i
1380 LineBuffex[x] [threadNum] = (colox Fractal.exeGenDisplay —fractal.cop... M hOtteSt SpOt
181) Sxsolutio... | Proper... | B call stack
182 else Summary -1 x
183 LineBuffer[x] [threadNum] = (WORD) |
- Total Selected: 1,555 (v | E'T;dgi’
Y 73— CPHIL"‘.E.‘:..,....; Y 2, 12
r [Filter: 100% & shown | Modue:| [Al] 3] Thread: an [v] ¥ = || Logical CPU Count: 2
Ready

. /

Source View: See the results on your source

Source view shows you the exact location on your source. Just double-click on the function names in any of the analysis views to see the source.

O Paraliel Kmplitier - Microsoft Visual Studia AEE Tune core utilization
Fle Edit View Project Build Debug Took Test Window Community Help _ _
P e @ 6 e e D L b Release - Win32 -l B Green = Ideal Red = Poor

HA Profie Concurrency -Whereism = B 00 3¢ B Compare @2 & =
i | - x || ey ~#% 4 _—— Length of bar is time, color is utilization
=@ e up| @& Cor y: Top-down Tree U Elapsed Time: =1
: = 2532 while the function is running
Function) s CPU Time by Utiization CPUTime: o
pecitaules @ Poor 00k @Idezl (@ Over Logical CPU Cuat~ B
GenColors, . 1.830: e — = e .
<« <-Painttine < Genl Fracta. 1535) ® o Average CPU utilization
Paintline <- GenDisplay <- GetMor Fractalexe 0.235 [S
[KiFastSystemCallRet ntdl.dil 0.622s (I &
[strnicmy MSYCRB0.d 0.0165 | o = . .
TF,Unrzg\snerLangaamuum MSCTF.dl 0.0185 | H 3‘-_| Most of the time this app onIy uses
- one core
b &
elected: . T . .
an =l & 2] Call stack information (not shown)
r [Filter: 100% & shown | Modue:| [Al] [s#] Thread: an v % = Simultaneous Running Threads is available
Ready

\

Concurrency Analysis: When are cores idle?

Like hotspot analysis, concurrency analysis finds the functions where you are spending the most time. But it also shows you how well you
are utilizing multiple cores. Color indicates the core utilization while the function is running. A green bar means all the cores are working. A red
bar means cores are underutilized. When there is red, add parallelism and get all the cores working for you. This helps you ensure application
performance scales as more cores are added.

-~

< Parallel Amplifier - Microsoft Visual Studio M=% Length of bar is wait time, color
File Edit View Project Buld Debug Tools Test Window Community Help . - .
T T =T TR U0 T T I U WL v) : is number of cores utilized during
Profile Locks and Waits -Where = @ 01 3¢ d Compare @B [-] | the wait
~raths | ro2ec TO3 ~ x || summary -1 x5
%[Locks and Waits: Bttom-up| & Locks and Waits: Top-down Tree | B Flapsed Time: g -
z 2.3465 : | _— Waiting with underutilized cores
Sync Object Name * B A Wiaiting Time: 3.2905_Lort
- Wait Function [»] || sync Object Type e ey .;’;‘t/ Logical CPU Count: 5
g
“BottomapTres B @roor {oc Wiicd Pover S H hurts performance
* Multiple Objects Constant 2159 [T AL i
[=/Critical Section Oxede6fodfa | Critical Section 1.105c [N 758 3
GenScanLine Critical Section 1,105 (I 758 < 1 H i i
[Thread Ox425feaa Thread 0.012s | FUlI =1 Wait count hE|DS Identlfy
[#Message Boxes Constant 0.014 | P = . . .
[#IMenus Msgs Constant 0.000s | 1[5 K interesting waits
#ICritical Section 0x6353d3d3 | Critical Section 0.000s | || & |2
ENane 0x7c5dcd05 Nane 0.000s | 3| =
o
Selected: 2.15% 138 g
2n Ba m [E=
3 [Filter: 100% is shawn | Wait Module: | [All v % = Simultaneous Running Threads
Ready

\

Locks and Waits Analysis: Where are the bad waits?

Waiting too long on a lock is @ common source of performance problems. It's not bad to wait while all the cores are busy (green). It is bad to wait
when there are unused cores available (red).

Compare two results

See the times and the difference for

~101hs | r02hs/rO1hs-r0Zhs i each fUnCtion
[Hotspats:Bottomue] - —
Function CPU Time:Result 1 i CPU Ti ':R it 2 CPU Time:Diffes rdths.ampl .
o | mereat1) meiReai meiDfference « oxcan e—=—— Use any of your previous results
03w, ampl
r02hs. mpl
¥ [73 Mv Insoector Results
< Summary of the change
lsoluti... [FPrope... |gcalst...
Summary -~ 1 x
Result 1 Result 2
Elapsed Time: /
2.152s 2.375s
Selected: 23775 25285 0.151s 1mu=urme: i
1] 2lis] m B L —
 [Filter: 100% s shown | Modue: [Al] [se] Thread:fany ¥ 3 2 2
Ready

N

Compare Results: Quickly see what changed

This gives you a fast way to check progress when tuning and also makes a handy regression analysis.

Features

= Fully integrated with Microsoft Visual Studio*
= Supports Microsoft* and Intel® Compilers

= Works with all models for parallelism offered by Intel®
Parallel Studio and Microsoft Visual Studio*, Intel®
Threading Building Blocks (Intel® TBB), OpenMP?,
and WinAPI.

= Intuitive performance profiler specifically designed for
threaded applications

= Find application hotspots and view them on the source

= Tune parallel applications for scalable performance
using concurrency analysis

= Use locks and waits analysis to find critical waits that
limit parallel performance

= Compare results to quickly see what changed or
find regressions

= Build applications that automatically scale for manycore

“Intel® Parallel Amplifier helped us improve our
CPU cores throughput almost 20%."

Anonymous beta tester describing
Intel® Parallel Amplifier

Intel® Parallel Studio

System Requirements

= Microsoft Visual Studio

= For the latest system requirements, go to
www.intel.com/software/products/systemrequirements/

Support

Intel Parallel Studio products include access to community
forums and a knowledge base for all your technical
support needs, including technical notes, application
notes, documentation, and all product updates.

For more information, go to
http://software.intel.com/sites/support/

Beta Versions Available Now

Download and register for the user forums at:
www.intel.com/software/ParallelStudioBeta/

Designed for today’s serial applications and tomorrow’s software innovators.

Intel brings simplified parallelism to Microsoft Visual Studio* C++ developers with a complete productivity solution designed to optimize
serial and new parallel applications for multicore and scale for manycore.

Intel® Parallel Studio: Create optimized serial and parallel
applications with the ultimate all-in-one parallelism toolkit

Intel® Parallel Composer: Develop effective applications
with a C/C++ compiler and advanced threaded libraries

*Other names and brands may be claimed as the property of others

Intel® Parallel Inspector: Ensure application reliability with
proactive parallel memory and threading error checking

Intel® Parallel Amplifier: Quickly find bottlenecks and tune
parallel applications for scalable multicore performance

] ®
©2009, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries. l n te

0209/BLA/CMD/PDF 321553-001

www.intel.com/software/products/systemrequirements/
http://software.intel.com/sites/support/
http://www.intel.com/software/ParallelStudioBeta/

