Intel® Parallel Composer

Product Brief

Intel® Parallel Composer

Parallel

‘Composer « Inspector - Amplifier Composer

Build Serial and Parallel C and C++ Applications
for Multicore Systems

Intel® Parallel Composer is a comprehensive set of Intel® G-+ compilers,
libraries, and debugging capabilities for developers bringing parallelism to
their Windows*-based client applications. It integrates with Microsoft Visual
Studio™, is compatible with Visual G++, and supports the way developers work,
protecting IDE investments while delivering an unprecedented breadth of
parallelism development capabilities, including parallel debugging. Intel Parallel
Composer is a stand-alone product or can be purchased as part of Intel®
Parallel Studio, which includes Intel® Parallel Inspector to analyze threading
and memory errors, and Intel® Parallel Amplifier for performance analysis of
parallel applications.

Intel Parallel Composer Components
= Intel G-+ Compilers for 32-bit processors, a cross-compiler to create 64-bit applications
on 32-bit systems, and a native 64-bit compiler

=Intel® Parallel Debugger Extension, which integrates with the Microsoft Visual
Studio debugger

=Intel® Threading Building Blocks (Intel® TBB), an award winning G++ template library that
abstracts threads to tasks to create reliable, portable, and scalable parallel applications. It
can also be used with Visual G-+,

=Intel® Integrated Performance Primitives (Intel® IPP) is an extensive library of multicore-ready,
highly optimized software functions for multimedia, data processing, and communications
applications. Intel IPP includes both hand-optimized primitive-level functions and high-level
threaded solutions such as codecs. It can be used for both Visual G+ and NET development.

= Sample code and a great Getting Started Guide to get you going quickly

Intel® C++ Compiler

Microsoft Visual Studio integration and compatibility
All features in Intel Parallel Studio are seamlessly integrated into
Microsoft Visual Studio 2005 and 2008. Intel Parallel Composer is one
of three main functional groups in Intel Parallel Studio. It includes the
Intel G-+ Compiler, Intel Parallel Debugger Extension, Intel Threading
Building Blocks, and Intel Integrated Performance Primitives.

The compiler offers native 32-bit development, a cross-compilation
environment (32-bit host to develop 64-bit applications), and native
64-bit development. You have the option of installing only the 32-bit
capability, only the 64-bit capabilities, or both.

The Intel G-+ Compiler and the associated Intel Parallel Debugger
Extension offer Cand G-+ developers a number of advantages, but
itis not required for the use of other components in Intel Parallel
Composer or the full Intel Parallel Studio. This means you can use Intel
Threading Building Blocks and Intel Integrated Performance Primitives
with the Visual G-+ compiler. You can also use the Intel Parallel Studio
memory leak or concurrency checking capabilities on applications built
with Visual G-+ In short, there are plenty of reasons for you to be
interested in using the full Intel Parallel Studio, including a powerful,
easy-to-use, compatible Intel G-+ compiler.

[1ueens Webuzging] - wic msoft Visual Studio 3 X
Els Eck Yoe Propsc: Euld Debeg fooks serdow Lomrunny Helo
T o 5,38 i | et P ab rlajg ¥ E‘Q-B

e e e k| B | 1 ST [El e = it sl
Euhﬂm.En:\l:\r.zr-nq-:-p-enm SG'ubﬂI'-'aralsll-?u;rs-"hh S apenmp.cpp | ol
2 s : T lakbl Seope || st |
[P U"-IIITI Tlusenc' {3 propecks) | 1f (mbafguesn=[1] -coll == jrow-if 4 I-A
= I1I1-W1EI1I'I1D TRTUTT}
= aarqtpmrp '
Lo o B y

| = Bl ro-cpemercashg
& (] rg-cpeamp-zzshy

/¢ columm 13 ok, =Sec Che gquecn
Djrq-cpu'ﬂp—zsmc:n a

Thread Data Sharng Lvenls
= .}.’ Areehesis run From Fn Jam Lo 9ol 2003 (2 evenis, acire, enanlsd, stop oneverk)
-HE nrofsolatens - CeHUD A & [hpts, 2 mozseses From 2 tresds
= ﬂi ncfSolations - CxDHOD A & Dpbes, § mocesses From 4 Bresds

a E i parcn quesns[raw] =col;
o A ng-parcn

| &+ - pasesep. ifirow==alea-1) |

(=1 E.,'IJ,:,.*! (=] ¢/ only an= thresd =should print allowsd to przot at a Time=
e pyseral e A increszing the Eolutlon counter iz pob sbowric

= st B FiTder _NOaVHe
e @ rg-st| salont[id] ++;

A CiFraoram Flssdve i Tonposer ZO0M S avclssten_LUSIC+HHINOuea nsing-openmz- mbehing-openng. copd 93] - 002452 mite, Thread =2009 [Open™® bask=21
47 CilFragram Fl=sdve Conpeesr 200N Sampd=sen USC+HINQueensingopenme-nkzhng-apenng copd B3] - Dx2H0245E mie, Thread==00¢ [Dpen™® task=2;
g_'? CriProgram FlesIvel Conpoassy 003N Samplzsien USW"++Nouee nsine openmee rbefing-oosnme. cood BS1 - 0200402430 read. Theead= 1268 (00 eiP basisd|
lJ;' CrlFragram Flesnte i onposss LEE AN S ol shen WSS+ HiNGuee nslng openmne (e []

_:F' Celprageam FlesIveConposcs 000 Samplmsion USICEANQUechsine ofenie | g0 o s Theeads S

12 + CHPrageam FhestirkshCompase | 2008 Sarplesler LEY T+ 0Cusers.. .
in ki
Tacks
I—" L] = Trps Teaiv | Perad | # Spavawd | Theead | Localion
SRR o sepended gkl il 2 0 4 1263 -
12 =umming Implict, ded | 4 C 1283 Crifrogram AesiinefCorposs A0 M Sandesien S0+ (NJueens\no-opennoeinbin g cpennnp . pat 1 15
| Es 20 Funming Irghct, b=d 1 + 0 0 CilFrogam MeshincelCorposs A0S S anplesien LS04+ - N emens no-openmzeinkslir gropenmp cpoi 103
21 Rumig Inphol, b= 1 + [Lak+ CiiProgram SasllmefCorpossr SO0 0 S a nolasgen S0+ = (N umensa-opmnmpen ksl gopaomp o po 1 05
Fomunting Tpliot, tied 1 1 i ANE Cprogram S es|InefCorpoans 00T Sannlesyen_ S0 - 0 NG aernsio openmneinksin g opeoonp o 105
Ready Lr JOL oA 15 chls INE

Figure 1: Intel® Parallel Composer integrates into Visual Studio*. The solution on display uses Intel C++. You can easily switch to Visual C++ from the

Project menu or by right-clicking over the solution or project name.

Easy to get started and stay connected with a

growing parallelism community

Intel Parallel Composer includes an easy-to-use Getting Started Guide
that offers a quick tour of functionality and code samples used to
convey how-to instructions. It even includes links to short videos, so
there is no doubt how to use the parallelism features in Intel Parallel
Composer. Users of Intel Parallel Composer found the guide to be
worth the few minutes it takes to go through it. They found the
sample code useful in introducing parallelism concepts and techniques,
which led to productive use of the toals.

The Getting Started Guide is available from several places. For
example, you can find it on our Web pages, at several points during
installation, from the Visual Studio Help menu (along with in-depth
documentation), and from the Intel Parallel Studio or Intel Parallel
Composer tree structure available from the Windows “Start” button.
There is even a prompt for it upon completion of installation. Whether
you are a beginner, a parallelism pro, or somewhere in between, it's
worth a few minutes to go through the Getting Started Guide.

Once you get going, you will find it useful to join the growing
community of developers taking advantage of systems based on Intel
multicore processors. Intel provides a dynamic forum for developers
10 exchange ideas, post comments and questions, and earn points to
become an Intel® Black Belt Software Developer. We also provide a
large and growing knowledge base presenting a variety of topics to
developers interested in parallelism. Join the community today. Visit
the parallel programming and multicore community at http:./software.
intel.com/en-us/articles/intel-parallel-studio/. From there, you can tap
into all of its resources, including blogs, knowledge bases, downloads,
and more. Feel free to explore, and don't forget to save it to your
favorites list.

Support for lambda functions

The Intel Compiler is the first G-+ compiler to implement lambda
functions in support of the working draft of the next G-+ standard
G++0x. Alambda construct is almost the same as a function object in
C++ or a function pointer in C. Together with closures, they represent
a powerful concept, because they combine code with a scope. A
closure is a function that can refer to and alter the values of bindings
established by binding forms that textually include the function
definition. In short, a lambda function, together with a closure, can be
seen as syntactic sugar around function objects and function pointers
that offers a convenient way to write function objects, or lambdas,
right at the point of use.

The source code in Figure 2 below is an example of a function object
created by a lambda expression. Tighter G-+ and Intel TBB integration
allows the simplification of the functor operator() concept by using
lambda functions and closures to pass code as parameters.

- p
void solve() {

parallel for(blocked range<size t>(0, size, 1),

[I(const blocked range<int> &r){
for (int i = r.begin(); i != r.end(); ++i)
setQueen(new int[size], 0, (int)i);
i

bi

N J

Figure 2: Source code example of a lambda function

Simple concurrency functions

The Intel® G-+ Compiler in Intel Parallel Studio offers four new
keywords to help make parallel programming easier; __taskcomplete,
__task,__par,and __critical. In order for your application to benefit
from the parallelism made possible by these keywords, you specify
the /Qopenmp compiler option and then recompile, which links in the
appropriate runtime support libraries, which manage the actual degree
of parallelism. These new keywords use the OpenMP 3.0* runtime
library to deliver the parallelism, but free you from actually expressing
it with OpenMP* pragma and directive syntax. This keeps your code
more naturally writtenin C or G-+

The keywords mentioned above are used as statement prefixes.

For example, we can parallelize the function, solve(), using __par.
Assuming that there is no overlap among the arguments, the solve()
function is modified with the addition of the __par keyword. With
no change to the way the function is called, the computation is
parallelized. An example is presented in Figure 3:

4 N\
void solve() {
__par for(int i=0; i<size; it++) {
// try all positions in first row
// create separate array for each recursion
// started here
setQueen(new int[size], 0, 1i);

}

. J

Figure 3: Example of __par, one of 4 simple concurrency functions, new
in the Intel C++ Compiler in Intel® Parallel Studio

http://software.intel.com/en-us/articles/intel-parallel-studio/
http://software.intel.com/en-us/articles/intel-parallel-studio/

OpenMP 3.0

OpenMP is an industry standard for portable multithreaded application
development. It is effective at fine-grain (loop-level) and large-

grain (function-level) threading. OpenMP 3.0 supports both data and
now task parallelism using a directives approach, which provides an
easy and powerful way to convert serial applications into parallel
applications, enabling potentially big performance gains from parallel
execution on multicore and symmetric multiprocessor systems.

When an application that has been written and built using OpenMP

is run on a system with just one processor, the results are the same

as unmodified source code. Stated differently, the results are the
same as those you would get from unmodified, serial-execution code.
This makes it easier for you to make incremental code changes while
maintaining serial consistency. Because only directives are inserted
into the code, it is possible to make incremental code changes and still
maintain a common code base for your software as it runs on systems
that still have only one processor.

OpenMP is a single source code solution that supports multiple
platforms and operating systems. There is also no need to “hard-
code” the number of cores into your application because the OpenMP
runtime chooses the right number for you.

OpenMP 3.0 Task Queuing

Sometimes programs with irregular patterns of dynamic data or
complicated control structures, like recursion, are hard to parallelize
efficiently. The work queuing model in OpenMP 3.0 allows you to
exploit irreqular parallelism, beyond that possible with OpenMP
20o0r25.

The task pragma specifies the environment within which the enclosed
units of work (tasks) are to be executed. When a task pragma is
encountered, the code inside the task block is conceptually queued
into the queue associated with the task. To preserve sequential
semantics, there is an implicit barrier at the completion of the task.
The developer is responsible for ensuring that no dependencies exist
or that dependencies are appropriately synchronized, either between
the task blocks, or between code in a task block and code in the task
block outside of the task blocks. An example is presented above in
Figure 4.

#pragma omp parallel
#pragma omp single
{
for(int i=0; i<size; i++) {
// try all positions in first row
// create separate array for each recursion
// started here
#pragma omp task

setQueen(new int[size], 0, 1i);

. J

Figure 4: An example of OpenMP3 3.0 task queuing

In the example in Figure 4 above, we need only one task queue.
Therefore, we need to set up the queue by invoking only one thread
(omp single). The setQueens calls are independent of each other's, and
therefore they fit nicely into the task concept. You might want to also
read about the Intel Parallel Debugger Extension, directly below, which
makes it easy to inspect the state of tasks, teams, locks, barriers, or
taskwaits in your OpenMP program in dedicated windows.

Intel Parallel Debugger Extension

Intel Parallel Composer includes the Intel Parallel Debugger Extension
which, after installation, can be accessed through the Visual Studio
Debug pull-down menu (see Figure 5 below).

_-'E'ﬂ'gi_v an Bimaon

| Stnn Dgbugang SETED

|| drsesueeninl] queens, in row, n col, ink)
Termnate 41
4SS ahould print alloved to print at & cime

& 0 * Ak+F10 F01UTI0N COURTAT 18 THOT SComic
§ ditach o Brocesz.,

| Excepions... CELEE

| e Inte L H

| Sep ver FI0

| 2o ShR+F1L

' Q_.sxwm (= e

’r
£
E

L | Thread Dats Sharing Detection »
Eveck cn Re-entrack Call...

| S 2 e
?w—wcm P OB Seridee Paralel Regons
Al ot itls TS [e
() Dizsble Al Breskoies

» || 53] Thiesd Dats Shering Evants

i
lrowtl, 1, id): {ﬁ.l Themsd Crats Sharing Fiters

e

; rf!f'!‘o"]‘”" } _ et .' Tazke
| B e negaters |8 spewn e

o Lecks

| oveis serveny ¢ Fiff Borirs

| | _ Ane mgid s o Teans
[t i e 8 Tebots

Figure 5: Intel Parallel Debugger Extension is accessible from the Debug
pull-down menu in Microsoft Visual Studio

The Intel Parallel Debugger Extension provides you with additional
insight and access to shared data and data dependencies in your
parallel application. This facilitates faster development cycles and
early detection of potential data access conflicts that can lead to
serious runtime issues. After installing the Intel Parallel Composer and
starting Visual Studio, you can use the Intel Parallel Debug Extension
whenever your applications are taking advantage of Single Instruction
Multiple Data (SIMD) execution and get additional insight into the
execution flow and possible runtime conflicts if your parallelized
application uses OpenMP threading.

To take advantage of the advanced features of the Intel Parallel
Debugger Extension like shared data event detection, function re-
entrancy detection, and OpenMP awareness including serialized
execution of parallelized code, compile your code with the

Intel Compiler using the /debug:parallel option for debug info
instrumentation.

For more information, see the Intel Parallel Debugger Extension white
paper at http:/software.intel.com/en-us/articles/parallel-debugger-
extension/. This paper goes into many more details and benefits the
debugger extension can bring to you, and how to best take advantage
of them.

If you are evaluating debugging products for your parallel applications,
consider the larger Intel Parallel Studio product suite. It includes
Intel Parallel Inspector, which features memory leak analysis and
thread checking tools. It also includes Intel Parallel Amplifier, which
provides hotspot (performance bottleneck) analysis and concurrency
checking tools to debug for code correctness with added awareness
of parallelized code and data. Intel Parallel Studio provides all of these
capabilities, including the Intel Parallel Debugger Extensions.

Optimize embarrassingly parallel loops

Algorithms that display data parallelism with iteration independence
lend themselves to loops that exhibit “embarrassingly parallel” code.
Intel Parallel Composer supports three techniques to maximize the
performance of such loops with minimal effort; auto-vectorization,
use of Intel-optimized valarray containers, and auto-parallelization.
Intel Parallel Composer can automatically detect loops that lend
themselves to auto-vectorization. This includes explicit forloops

with static or dynamic arrays, vector and valarray containers, or user-
defined C++ classes with explicit loops. As a special case, implicit
valarray loops can either be auto-vectorized or directed to invoke
optimized Intel Integrated Performance Primitives (IPP) library
primitives. Auto-vectorization and use of optimized valarray headers
optimize the performance of your application to take full advantage of
processors that support the Streaming SIMD Extensions.

In a moment, we'll look at how to enable Intel optimized valarray
headers. But first, let's look at Figure 6, which shows an example of an
explicit valarray, vector loops, and an implicit valarray loop.

4 N\
valarray<float> vf(size), vfr(size);

vector<float> vecf(size), vecfr(size);

//log function, vector, explicit loop
for (int j = 0; j < size-1; j++) {

vecfr[j]=log(vecf[]j]);

//log function, valarray, explicit loop
for (int j = 0; j < size-1; j++) {

vir[jl=log(v£E[]);

//log function, valarray, implicit loop
vir=log(vf);
_ J

Figure 6: The source code above shows examples of explicit valarray,
vector loops, and an implicit valarray loop

To use optimized valarray headers, you need to specify the use of Intel
Integrated Performance Primitives as a Build Component Selection
and set a command line option. To do this, first load your project into
Visual Studio and bring up the project properties pop-up window.

In the "Additional Options” box, simply add "/Quse-intel-optimized-
headers” and click "OK." Figure 7 presents a picture of how to do this.

ng-openmp Property Pages
Configuration: [4ctve(Debug) | Piatiom: [acuveininiz) =] Corfigurstion Manager...
[= Corfiguration Properties All Options:
Ganaral Je /02 /D "WIN32" /D "_DEBUG" /D "_COMSOLE" /D ™_UNICODE" /D "UNICODE” /EHsc MDd fGS ffp:fast =]
Debugging JFo'Debug/” M3 frologo Wips4 /21 Qopenmp debug:paraliel
EF-CACe+
General
Disbug
Optimization
Preprocessar
Cods Generation
Language
Precompiled Headsrs
Qutput Files
Browse Information
Diagnostics
Advanced
Commend Line
- Linker -
- Manifest Tool Additional Options:
Fe- Browse Information JQuse-intel-optimized-headers| |
#- Build Events
F- Custom Build Step
[l

OK T | Apply ‘

Figure 7: Adding the command to use optimized header files to a
command line in Visual C++

http://software.intel.com/en-us/articles/parallel-debugger-extension/
http://software.intel.com/en-us/articles/parallel-debugger-extension/

Next, from the Project menu, open the Build Component Selection
pop-up. In the box to the right of “Intel Integrated Performance
Primitives,” select "Common" and click “OK." Figure 8 presents a picture
of this. With this done, you can rebuild your application and check it for
performance and behavior as you would when you make any change
to your application.

ng-openmp - Build Component Selection H
Project Platform:

[p<bue = | H
ersion to use with this configuration: Default Suite version:

| |

Intel Performance Libraries to use with this configuration

Project Configuration:

Intel Integrated Performance Primitives:

Intel Threading Building Blocks: Mo -

QK | Cancel Apply |

Figure 8: Directing Visual Studio to use Intel IPP

Auto-parallelization improves application performance by finding
parallel loops capable of being executed safely in parallel and
automatically generating multithreaded code, allowing you to take
advantage of multicore processors. Automatic parallelization relieves
the user from having to deal with the low-level details of iteration
partitioning, data sharing, thread scheduling, and synchronizations.

Auto-parallelization complements auto-vectorization and use
of optimized valarray headers, giving you optimal performance
on multicore systems that support SSE. For more information
on multithreaded application support, see the user quide (http://
software.intel.com/en-us/intel-parallel-composer/, then click the
documentation link).

Intel Threading Building Blocks

Intel Threading Building Blocks (Intel TBB) is an award-winning G-+
template library that abstracts threads to tasks to create reliable,
portable, and scalable parallel applications. Included in Intel Parallel
Composer, Intel TBB s a standard template library (STL) that can be
used with the Intel G-+ Compiler or with Microsoft Visual Gr+,

Intel TBB solves three key challenges for parallel programming:

=Productivity: Simplifies the implementation of parallelism
=Correctness: Helps eliminate parallel synchronization issues

=Maintenance: Aids in the creation of applications ready for
tomorrow, not just today

Advantages of using Intel TBB:

=Future-proof applications: As the number of cores (and
threads) increase, application speedup increases using Intel TBB's
sophisticated task scheduler

=Portability: Implement parallelism once to execute threaded code
on multiple platforms

=Interoperability: Commitment to work with a variety of threading
methods, hardware, and operating systems

=Active open source community: Intel TBBis also available in an
open source version. opentbb.org is an active site with forums, blogs,
code samples, and much more

Intel TBB offers comprehensive, abstracted templates, containers, and
classes for parallelism. Figure 9 highlights the major functional groups
within Intel TBB.

How Intel® Threading Building Blocks
Solves Threading Challenges

Needed algorithms Optimize the Fundamental functions to
designed for parallel processor’s ability manage threaded
performance and to perform memory, scheduling,
scalability simultaneous tasks synchronization and more

Scalable
Foundation
Classes

Thread-safe
Concurrent
Containers

Parallel
Algorithm
Templates

for hash maps
reduce = queues synchronization primitives
do = vectors global time stamp

scan task scheduler

while tbb thread class

pipeline

sort

scalable memory allocator

Figure 9: Major function groups within Intel® TBB

Problem Solution

How to add
parallelism easily

Intel TBB parallel_for command

Straightforward replacement of for/next loops to get
advantages of parallelism

Load-balanced parallel execution of fixed number of
independent loop iterations

Intel TBB Task Scheduler

Manages thread pool and hides complexity of native threads

Designed to address common performance issues of parallel
programming

- Oversubscription: One scheduler thread per
hardware thread

- High overhead: Programmer specifies tasks, not threads
- Load imbalance: Work-stealing balances load

Management of
threads to get
best scalability

Intel TBB provides tested, tuned, and scalable memory
allocator based on per-thread memory management algorithm

- As an allocator argument to STL template classes
- As a replacement for malloc/realloc/free calls (C programs)

- As a replacement for global new and delete operators
(C++ programs)

Memory
allocation is
a bottleneck
in concurrent
environment

Figure 10: Intel® TBB addresses three major parallelism issues

http://software.intel.com/en-us/intel-parallel-composer/
http://software.intel.com/en-us/intel-parallel-composer/
http://www.opentbb.org

Intel Integrated Performance
Primitives (Intel IPP)

Intel Parallel Composer includes the Intel Integrated Performance
Primitives. Intel IPP is an extensive library of multicore-ready, highly
optimized software functions for multimedia, data processing, and
communications applications. It offers thousands of optimized
functions covering frequently used fundamental algorithms in video
coding, signal processing, audio coding, image processing, speech
coding, JPEG coding, speech recognition, computer vision, data
compression, image color conversion, cryptography, string processing/
regular expressions, and vector/matrix mathematics.

Intel IPP includes both hand-optimized primitive-level functions and
high-level threaded samples, such as codecs, and can be used for both
Visual G-+ and NET development. All of these functions and samples
are fully thread-safe, and many are internally threaded, to help you
get the most out of today's multicore processors and scale to future
Manycore processors.

Applications

Digital Media | Web/Enterprise Data §§ Embedded
Scientific/Technical

Cross Platform
€/ C++API for Code
Re-Use

Intel® Integrated Performance Primitives
15 Function Domains

Communications & Data
Processing

Images and
Video Signal Processing

< Image Protassing = Signal Processing ¢ Data

Compression
* Cryprography
¢ Siring processing
¢ Matrix [Vector
Algebira

= Color commrsion * Audio Coding

« |PEG/ JPEGZ00D ~ Speech Coding

« Video Coding " Speech

~ Computer Vision Recognition

¥ Ray-Tracing / " Mector
Rendering Operations

—

Optimized 32-bit & 64-bit
Multi-Core Performance

L o

Figure 11: Intel® Integrated Performance Primitives is included in
Intel® Parallel Composer, a part of Intel® Parallel Studio, and features
threaded and thread-safe library functions over a wide variety of
domains listed above

Intel IPP Performance

Depending on the application and workload, Intel IPP functions can
perform many times faster than the equivalent compiled C code. In
the image resize example below, the same operation that required
338 microseconds to execute in compiled G-+ code required only 111
microseconds when Intel IPP image processing functions were used.
That is a 300% performance improvement.

Ei'c Code tim¢ = 338 usec

e —
EETPP tim{ = 111 usec

Figure 12: In this image resizing example (from 256x256 bits to
460x332 bits), the Intel® IPP-powered application ranin 111 msec vs.
338 msec for compiled C++ code (system configuration: Intel® Xeon, 2.9
GHz, 2 processors, 4 cores/processor, 2 threads/processor)

Using Intel IPP in Visual Studio

[t's easy to add Intel IPP support to a Microsoft Visual Studio project.
Intel Parallel Composer includes menus and dialogs to add Intel

IPP library names and paths to a Visual Studio project. Simply click

on the project name in the Solution Explorer, select the Intel Build
Components Selection menu item, and use the Build Components
dialog to add Intel IPP. Then just add Intel IPP code to your project
including the header and functional code. You'll notice that the Build
Selection dialog automatically adds the library names to the linker for
IPP and adds a path to the Intel IPP libraries.

In addition to G-+ projects, Intel IPP can also be used in C#f projects
using the included wrapper classes to support calls from C# to Intel
IPP functions in the string processing, image processing, signal

processing, color conversion, cryptography, data compression, JPEG,

matrix, and vector math domains.

g Difa Tools Test Auahos findow Heip
LT b Release - Win3z - 18 DS AEED
semeh By @ EA B D4tRe R +N] B AR 3E 21

i
[scoper B[P hevrsterd o e 1mt seebian,

Besize Tnnge’ 01 projuct]

Finclude "ipp.h" A Include ipp.h to call all IPP function alls

#oetine RUNTINE (unasgned long) 1DPGELCPUCLOGKa ()
faetine PI 3.14159
| #aezine Loor 10

unsigned long TPP_Resize{void® arc, int srcVideh, int srcHeighe, int srcScep,
T, At datdideh, int dstHeight, int dsttep,
ocm_x, dowble m_nsoom y, int intecpolation)

= Calling IPP.
| "
| etine 1P
Ippikect srcro functions,
Ippifize srchi
Tppasize decsi
flamennnamen Perforn I
for (int 1=0; 1<LOOP: 1+4]]
ippiResize Bu C1R((Ippdur)src, sroSize, scotep,srorol (Ip
datStep,dstSize ,m nzoom x,m nzoom_y, interpolacio):
stop_clock = RUNTIHE;
ine mhz;
_I ApPOELCpUFTeqEnE (Lmhz) ¢
. ||
= B |
3

Besly
ﬁ‘ml (N R RSP PR G F P RS 1| Py —r—

! off

Figure 13: It's easy to incorporate Intel® IPP library calls into your Visual
Studio* code

=Mi ft Visual Studi
= Seamlessly upgrades Microsoft* Visual Studio for C/Gr+ (CTOS0TEVISHaTStudlo

parallelism. It integrates into Visual Studio and preserves » For the Iatest system requirements, go to:

your IDE investment, while adding parallelism capabilities. wwwi.intel.com/software/products/systemrequirements/
= Intel Parallel Debugger Extension integrates with the

Microsoft debugger, enhancing Visual Studio to help find Support

and address parallelism issues. Saves time in getting Intel Parallel Studio products include access to community

applications ready to be used. forums and a knowledge base for all your technical

support needs, including technical notes, application

= Includes simple concurrency functions, data parallel arrays, ‘
notes, documentation, and all product updates.

and thousands of threaded library functions, which simplify
threading tasks and speed application development For more information, go to

= Auto-parallelization and auto-vectorization options, which http://software.intel.com/en-us/articles/intel-parallel-studio/

simplify development and save time
Beta Versions Available Now

Start adding parallelism to your applications and take advantage

= Integrated array notation, data-parallel Intel IPP functions

speed audio, video, signal analysis, and other application
classes of the growing installed-base of multicore systems in the

. _ market today, and future-proof your applications now for the
=Includes Intel TBB, the most efficient way to implement

parallel applications and unleash multicore platform

= Extensive documentation, including code examples, for Downl_oad and register for the user fo.rums at:
www.intel.com/software/ParallelStudioBeta/

manycore systems coming soon.

getting started with parallelism. Also includes a short
Getting Started Guide to get you going in just a few minutes.

= Community support. You're not alone out there. Join the
growing community of developers adding parallelism to their
code. Draw on the experience of others and contribute your
own knowledge and experience, and win prizes while doing it.

Intel® Parallel Studio

Designed for today’s serial applications and tomorrow’s software innovators.

Intel brings simplified parallelism to Microsoft Visual Studio* C++ developers with a complete productivity solution designed to optimize
serial and new parallel applications for multicore and scale for manycore.

Intel® Parallel Studio: Create optimized serial and parallel Intel® Parallel Inspector: Ensure application reliability with
applications with the ultimate all-in-one parallelism toolkit proactive parallel memory and threading error checking

Intel® Parallel Composer: Develop effective applications Intel® Parallel Amplifier: Quickly find bottlenecks and tune
with a C/C++ compiler and advanced threaded libraries parallel applications for scalable multicore performance

] ®
©2009, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.
0209/BLA/CMD/PDF 321554-001

www.intel.com/software/products/systemrequirements/
http://software.intel.com/en-us/articles/intel-parallel-studio/
http://www.intel.com/software/ParallelStudioBeta/

