
Build Serial and Parallel C and C++ Applications
for Multicore Systems
Intel® Parallel Composer is a comprehensive set of Intel® C++ compilers,
libraries, and debugging capabilities for developers bringing parallelism to
their Windows*-based client applications. It integrates with Microsoft Visual
Studio*, is compatible with Visual C++, and supports the way developers work,
protecting IDE investments while delivering an unprecedented breadth of
parallelism development capabilities, including parallel debugging. Intel Parallel
Composer is a stand-alone product or can be purchased as part of Intel®
Parallel Studio, which includes Intel® Parallel Inspector to analyze threading
and memory errors, and Intel® Parallel Amplifier for performance analysis of
parallel applications.

Intel Parallel Composer Components
Intel C++ Compilers for 32-bit processors, a cross-compiler to create 64-bit applications •	

on 32-bit systems, and a native 64-bit compiler

Intel® Parallel Debugger Extension, which integrates with the Microsoft Visual •	

Studio debugger

Intel® Threading Building Blocks (Intel® TBB), an award winning C++ template library that •	

abstracts threads to tasks to create reliable, portable, and scalable parallel applications. It

can also be used with Visual C++.

Intel® Integrated Performance Primitives (Intel® IPP) is an extensive library of multicore-ready, •	

highly optimized software functions for multimedia, data processing, and communications

applications. Intel IPP includes both hand-optimized primitive-level functions and high-level

threaded solutions such as codecs. It can be used for both Visual C++ and .NET development.

Sample code and a great Getting Started Guide to get you going quickly •	

Product Brief
Intel® Parallel Composer

Intel® Parallel Composer

Intel® C++ Compiler

Microsoft Visual Studio integration and compatibility
All features in Intel Parallel Studio are seamlessly integrated into

Microsoft Visual Studio 2005 and 2008. Intel Parallel Composer is one

of three main functional groups in Intel Parallel Studio. It includes the

Intel C++ Compiler, Intel Parallel Debugger Extension, Intel Threading

Building Blocks, and Intel Integrated Performance Primitives.

The compiler offers native 32-bit development, a cross-compilation

environment (32-bit host to develop 64-bit applications), and native

64-bit development. You have the option of installing only the 32-bit

capability, only the 64-bit capabilities, or both.

The Intel C++ Compiler and the associated Intel Parallel Debugger

Extension offer C and C++ developers a number of advantages, but

it is not required for the use of other components in Intel Parallel

Composer or the full Intel Parallel Studio. This means you can use Intel

Threading Building Blocks and Intel Integrated Performance Primitives

with the Visual C++ compiler. You can also use the Intel Parallel Studio

memory leak or concurrency checking capabilities on applications built

with Visual C++. In short, there are plenty of reasons for you to be

interested in using the full Intel Parallel Studio, including a powerful,

easy-to-use, compatible Intel C++ compiler.

.

Figure 1: Intel® Parallel Composer integrates into Visual Studio*. The solution on display uses Intel C++. You can easily switch to Visual C++ from the
Project menu or by right-clicking over the solution or project name.

void solve() {

 parallel_for(blocked_range<size_t>(0, size, 1),

 [](const blocked_range<int> &r){

 for (int i = r.begin(); i != r.end(); ++i)

 setQueen(new int[size], 0, (int)i);

 };

 });

}

void solve() {

 __par for(int i=0; i<size; i++) {

 // try all positions in first row

 // create separate array for each recursion

 // started here

 setQueen(new int[size], 0, i);

 }

}

Figure 2: Source code example of a lambda function

Figure 3: Example of __par, one of 4 simple concurrency functions, new
in the Intel C++ Compiler in Intel® Parallel Studio

Easy to get started and stay connected with a
growing parallelism community
Intel Parallel Composer includes an easy-to-use Getting Started Guide

that offers a quick tour of functionality and code samples used to

convey how-to instructions. It even includes links to short videos, so

there is no doubt how to use the parallelism features in Intel Parallel

Composer. Users of Intel Parallel Composer found the guide to be

worth the few minutes it takes to go through it. They found the

sample code useful in introducing parallelism concepts and techniques,

which led to productive use of the tools.

The Getting Started Guide is available from several places. For

example, you can find it on our Web pages, at several points during

installation, from the Visual Studio Help menu (along with in-depth

documentation), and from the Intel Parallel Studio or Intel Parallel

Composer tree structure available from the Windows “Start” button.

There is even a prompt for it upon completion of installation. Whether

you are a beginner, a parallelism pro, or somewhere in between, it’s

worth a few minutes to go through the Getting Started Guide.

Once you get going, you will find it useful to join the growing

community of developers taking advantage of systems based on Intel

multicore processors. Intel provides a dynamic forum for developers

to exchange ideas, post comments and questions, and earn points to

become an Intel® Black Belt Software Developer. We also provide a

large and growing knowledge base presenting a variety of topics to

developers interested in parallelism. Join the community today. Visit

the parallel programming and multicore community at http://software.

intel.com/en-us/articles/intel-parallel-studio/. From there, you can tap

into all of its resources, including blogs, knowledge bases, downloads,

and more. Feel free to explore, and don’t forget to save it to your

favorites list.

Support for lambda functions
The Intel Compiler is the first C++ compiler to implement lambda

functions in support of the working draft of the next C++ standard

C++0x. A lambda construct is almost the same as a function object in

C++ or a function pointer in C. Together with closures, they represent

a powerful concept, because they combine code with a scope. A

closure is a function that can refer to and alter the values of bindings

established by binding forms that textually include the function

definition. In short, a lambda function, together with a closure, can be

seen as syntactic sugar around function objects and function pointers

that offers a convenient way to write function objects, or lambdas,

right at the point of use.

Simple concurrency functions
The Intel® C++ Compiler in Intel Parallel Studio offers four new

keywords to help make parallel programming easier: __taskcomplete,

__task, __par, and __critical. In order for your application to benefit

from the parallelism made possible by these keywords, you specify

the /Qopenmp compiler option and then recompile, which links in the

appropriate runtime support libraries, which manage the actual degree

of parallelism. These new keywords use the OpenMP 3.0* runtime

library to deliver the parallelism, but free you from actually expressing

it with OpenMP* pragma and directive syntax. This keeps your code

more naturally written in C or C++.

The keywords mentioned above are used as statement prefixes.

For example, we can parallelize the function, solve(), using __par.

Assuming that there is no overlap among the arguments, the solve()

function is modified with the addition of the __par keyword. With

no change to the way the function is called, the computation is

parallelized. An example is presented in Figure 3:

The source code in Figure 2 below is an example of a function object

created by a lambda expression. Tighter C++ and Intel TBB integration

allows the simplification of the functor operator() concept by using

lambda functions and closures to pass code as parameters.

http://software.intel.com/en-us/articles/intel-parallel-studio/
http://software.intel.com/en-us/articles/intel-parallel-studio/

#pragma omp parallel

#pragma omp single

{

 for(int i=0; i<size; i++) {

 // try all positions in first row

 // create separate array for each recursion

 // started here

#pragma omp task

 setQueen(new int[size], 0, i);

 }

}

OpenMP 3.0
OpenMP is an industry standard for portable multithreaded application

development. It is effective at fine-grain (loop-level) and large-

grain (function-level) threading. OpenMP 3.0 supports both data and

now task parallelism using a directives approach, which provides an

easy and powerful way to convert serial applications into parallel

applications, enabling potentially big performance gains from parallel

execution on multicore and symmetric multiprocessor systems.

When an application that has been written and built using OpenMP

is run on a system with just one processor, the results are the same

as unmodified source code. Stated differently, the results are the

same as those you would get from unmodified, serial-execution code.

This makes it easier for you to make incremental code changes while

maintaining serial consistency. Because only directives are inserted

into the code, it is possible to make incremental code changes and still

maintain a common code base for your software as it runs on systems

that still have only one processor.

OpenMP is a single source code solution that supports multiple

platforms and operating systems. There is also no need to “hard-

code” the number of cores into your application because the OpenMP

runtime chooses the right number for you.

OpenMP 3.0 Task Queuing
Sometimes programs with irregular patterns of dynamic data or

complicated control structures, like recursion, are hard to parallelize

efficiently. The work queuing model in OpenMP 3.0 allows you to

exploit irregular parallelism, beyond that possible with OpenMP

2.0 or 2.5.

The task pragma specifies the environment within which the enclosed

units of work (tasks) are to be executed. When a task pragma is

encountered, the code inside the task block is conceptually queued

into the queue associated with the task. To preserve sequential

semantics, there is an implicit barrier at the completion of the task.

The developer is responsible for ensuring that no dependencies exist

or that dependencies are appropriately synchronized, either between

the task blocks, or between code in a task block and code in the task

block outside of the task blocks. An example is presented above in

Figure 4.

In the example in Figure 4 above, we need only one task queue.

Therefore, we need to set up the queue by invoking only one thread

(omp single). The setQueens calls are independent of each other’s, and

therefore they fit nicely into the task concept. You might want to also

read about the Intel Parallel Debugger Extension, directly below, which

makes it easy to inspect the state of tasks, teams, locks, barriers, or

taskwaits in your OpenMP program in dedicated windows.

Intel Parallel Debugger Extension
Intel Parallel Composer includes the Intel Parallel Debugger Extension

which, after installation, can be accessed through the Visual Studio

Debug pull-down menu (see Figure 5 below).

Figure 4: An example of OpenMP3 3.0 task queuing

Figure 5: Intel Parallel Debugger Extension is accessible from the Debug
pull-down menu in Microsoft Visual Studio

In a moment, we’ll look at how to enable Intel optimized valarray

headers. But first, let’s look at Figure 6, which shows an example of an

explicit valarray, vector loops, and an implicit valarray loop.

The Intel Parallel Debugger Extension provides you with additional

insight and access to shared data and data dependencies in your

parallel application. This facilitates faster development cycles and

early detection of potential data access conflicts that can lead to

serious runtime issues. After installing the Intel Parallel Composer and

starting Visual Studio, you can use the Intel Parallel Debug Extension

whenever your applications are taking advantage of Single Instruction

Multiple Data (SIMD) execution and get additional insight into the

execution flow and possible runtime conflicts if your parallelized

application uses OpenMP threading.

To take advantage of the advanced features of the Intel Parallel

Debugger Extension like shared data event detection, function re-

entrancy detection, and OpenMP awareness including serialized

execution of parallelized code, compile your code with the

Intel Compiler using the /debug:parallel option for debug info

instrumentation.

For more information, see the Intel Parallel Debugger Extension white

paper at http://software.intel.com/en-us/articles/parallel-debugger-

extension/. This paper goes into many more details and benefits the

debugger extension can bring to you, and how to best take advantage

of them.

If you are evaluating debugging products for your parallel applications,

consider the larger Intel Parallel Studio product suite. It includes

Intel Parallel Inspector, which features memory leak analysis and

thread checking tools. It also includes Intel Parallel Amplifier, which

provides hotspot (performance bottleneck) analysis and concurrency

checking tools to debug for code correctness with added awareness

of parallelized code and data. Intel Parallel Studio provides all of these

capabilities, including the Intel Parallel Debugger Extensions.

Optimize embarrassingly parallel loops
Algorithms that display data parallelism with iteration independence

lend themselves to loops that exhibit “embarrassingly parallel” code.

Intel Parallel Composer supports three techniques to maximize the

performance of such loops with minimal effort: auto-vectorization,

use of Intel-optimized valarray containers, and auto-parallelization.

Intel Parallel Composer can automatically detect loops that lend

themselves to auto-vectorization. This includes explicit for loops

with static or dynamic arrays, vector and valarray containers, or user-

defined C++ classes with explicit loops. As a special case, implicit

valarray loops can either be auto-vectorized or directed to invoke

optimized Intel Integrated Performance Primitives (IPP) library

primitives. Auto-vectorization and use of optimized valarray headers

optimize the performance of your application to take full advantage of

processors that support the Streaming SIMD Extensions.

Figure 6: The source code above shows examples of explicit valarray,
vector loops, and an implicit valarray loop

valarray<float> vf(size), vfr(size);

vector<float> vecf(size), vecfr(size);

//log function, vector, explicit loop

for (int j = 0; j < size-1; j++) {

 vecfr[j]=log(vecf[j]);

}

//log function, valarray, explicit loop

for (int j = 0; j < size-1; j++) {

 vfr[j]=log(vf[j]);

}

//log function, valarray, implicit loop

vfr=log(vf);

To use optimized valarray headers, you need to specify the use of Intel

Integrated Performance Primitives as a Build Component Selection

and set a command line option. To do this, first load your project into

Visual Studio and bring up the project properties pop-up window.

In the “Additional Options” box, simply add “/Quse-intel-optimized-

headers” and click “OK.” Figure 7 presents a picture of how to do this.

Figure 7: Adding the command to use optimized header files to a
command line in Visual C++

http://software.intel.com/en-us/articles/parallel-debugger-extension/
http://software.intel.com/en-us/articles/parallel-debugger-extension/

Auto-parallelization improves application performance by finding

parallel loops capable of being executed safely in parallel and

automatically generating multithreaded code, allowing you to take

advantage of multicore processors. Automatic parallelization relieves

the user from having to deal with the low-level details of iteration

partitioning, data sharing, thread scheduling, and synchronizations.

Auto-parallelization complements auto-vectorization and use

of optimized valarray headers, giving you optimal performance

on multicore systems that support SSE. For more information

on multithreaded application support, see the user guide (http://

software.intel.com/en-us/intel-parallel-composer/, then click the

documentation link).

Intel Threading Building Blocks
Intel Threading Building Blocks (Intel TBB) is an award-winning C++

template library that abstracts threads to tasks to create reliable,

portable, and scalable parallel applications. Included in Intel Parallel

Composer, Intel TBB is a standard template library (STL) that can be

used with the Intel C++ Compiler or with Microsoft Visual C++.

Intel TBB solves three key challenges for parallel programming:

Productivity•	 : Simplifies the implementation of parallelism

Correctness•	 : Helps eliminate parallel synchronization issues

Maintenance•	 : Aids in the creation of applications ready for

tomorrow, not just today

Advantages of using Intel TBB:
Future-proof applications•	 : As the number of cores (and

threads) increase, application speedup increases using Intel TBB’s

sophisticated task scheduler

Portability•	 : Implement parallelism once to execute threaded code

on multiple platforms

Interoperability•	 : Commitment to work with a variety of threading

methods, hardware, and operating systems

Active open source community•	 : Intel TBB is also available in an

open source version. opentbb.org is an active site with forums, blogs,

code samples, and much more

Intel TBB offers comprehensive, abstracted templates, containers, and

classes for parallelism. Figure 9 highlights the major functional groups

within Intel TBB.

Next, from the Project menu, open the Build Component Selection

pop-up. In the box to the right of “Intel Integrated Performance

Primitives,” select “Common” and click “OK.” Figure 8 presents a picture

of this. With this done, you can rebuild your application and check it for

performance and behavior as you would when you make any change

to your application.

Figure 9: Major function groups within Intel® TBB

Figure 10: Intel® TBB addresses three major parallelism issues

Figure 8: Directing Visual Studio to use Intel IPP

Problem Solution

How to add
parallelism easily

Intel TBB parallel_for command

Straightforward replacement of for/next loops to get
advantages of parallelism

Load-balanced parallel execution of fixed number of
independent loop iterations

Management of
threads to get
best scalability

Intel TBB Task Scheduler

Manages thread pool and hides complexity of native threads

Designed to address common performance issues of parallel
programming

- Oversubscription: One scheduler thread per
hardware thread

- High overhead: Programmer specifies tasks, not threads

- Load imbalance: Work-stealing balances load

Memory
allocation is
a bottleneck
in concurrent
environment

Intel TBB provides tested, tuned, and scalable memory
allocator based on per-thread memory management algorithm

- As an allocator argument to STL template classes

- As a replacement for malloc/realloc/free calls (C programs)

- As a replacement for global new and delete operators
(C++ programs)

http://software.intel.com/en-us/intel-parallel-composer/
http://software.intel.com/en-us/intel-parallel-composer/
http://www.opentbb.org

Figure 11: Intel® Integrated Performance Primitives is included in
Intel® Parallel Composer, a part of Intel® Parallel Studio, and features
threaded and thread-safe library functions over a wide variety of
domains listed above

Figure 12: In this image resizing example (from 256x256 bits to
460x332 bits), the Intel® IPP-powered application ran in 111 msec vs.
338 msec for compiled C++ code (system configuration: Intel® Xeon, 2.9
GHz, 2 processors, 4 cores/processor, 2 threads/processor)

Intel Integrated Performance
Primitives (Intel IPP)

Intel Parallel Composer includes the Intel Integrated Performance

Primitives. Intel IPP is an extensive library of multicore-ready, highly

optimized software functions for multimedia, data processing, and

communications applications. It offers thousands of optimized

functions covering frequently used fundamental algorithms in video

coding, signal processing, audio coding, image processing, speech

coding, JPEG coding, speech recognition, computer vision, data

compression, image color conversion, cryptography, string processing/

regular expressions, and vector/matrix mathematics.

Intel IPP includes both hand-optimized primitive-level functions and

high-level threaded samples, such as codecs, and can be used for both

Visual C++ and .NET development. All of these functions and samples

are fully thread-safe, and many are internally threaded, to help you

get the most out of today’s multicore processors and scale to future

manycore processors.

Intel IPP Performance
Depending on the application and workload, Intel IPP functions can

perform many times faster than the equivalent compiled C code. In

the image resize example below, the same operation that required

338 microseconds to execute in compiled C++ code required only 111

microseconds when Intel IPP image processing functions were used.

That is a 300% performance improvement.

Figure 13: It’s easy to incorporate Intel® IPP library calls into your Visual
Studio* code

Using Intel IPP in Visual Studio
It’s easy to add Intel IPP support to a Microsoft Visual Studio project.

Intel Parallel Composer includes menus and dialogs to add Intel

IPP library names and paths to a Visual Studio project. Simply click

on the project name in the Solution Explorer, select the Intel Build

Components Selection menu item, and use the Build Components

dialog to add Intel IPP. Then just add Intel IPP code to your project

including the header and functional code. You’ll notice that the Build

Selection dialog automatically adds the library names to the linker for

IPP and adds a path to the Intel IPP libraries.

In addition to C++ projects, Intel IPP can also be used in C# projects

using the included wrapper classes to support calls from C# to Intel

IPP functions in the string processing, image processing, signal

processing, color conversion, cryptography, data compression, JPEG,

matrix, and vector math domains.

© 2009, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.

0209/BLA/CMD/PDF 321554-001

Intel® Parallel Studio

Designed for today’s serial applications and tomorrow’s software innovators.
Intel brings simplified parallelism to Microsoft Visual Studio* C++ developers with a complete productivity solution designed to optimize

serial and new parallel applications for multicore and scale for manycore.

Intel® Parallel Studio: Create optimized serial and parallel

applications with the ultimate all-in-one parallelism toolkit

Intel® Parallel Composer: Develop effective applications

with a C/C++ compiler and advanced threaded libraries

Intel® Parallel Inspector: Ensure application reliability with

proactive parallel memory and threading error checking

Intel® Parallel Amplifier: Quickly find bottlenecks and tune

parallel applications for scalable multicore performance

Features

Seamlessly upgrades Microsoft* Visual Studio for C/C++ •	

parallelism. It integrates into Visual Studio and preserves

your IDE investment, while adding parallelism capabilities.

Intel Parallel Debugger Extension integrates with the •	

Microsoft debugger, enhancing Visual Studio to help find

and address parallelism issues. Saves time in getting

applications ready to be used.

Includes simple concurrency functions, data parallel arrays, •	

and thousands of threaded library functions, which simplify

threading tasks and speed application development

Auto-parallelization and auto-vectorization options, which •	

simplify development and save time

Integrated array notation, data-parallel Intel IPP functions •	

speed audio, video, signal analysis, and other application

classes

Includes Intel TBB, the most efficient way to implement •	

parallel applications and unleash multicore platform

Extensive documentation, including code examples, for •	

getting started with parallelism. Also includes a short

Getting Started Guide to get you going in just a few minutes.

Community support. You’re not alone out there. Join the •	

growing community of developers adding parallelism to their

code. Draw on the experience of others and contribute your

own knowledge and experience, and win prizes while doing it.

System Requirements
Microsoft Visual Studio •	

For the latest system requirements, go to: •	

www.intel.com/software/products/systemrequirements/

Support
Intel Parallel Studio products include access to community

forums and a knowledge base for all your technical

support needs, including technical notes, application

notes, documentation, and all product updates.

For more information, go to

http://software.intel.com/en-us/articles/intel-parallel-studio/

Beta Versions Available Now
Start adding parallelism to your applications and take advantage

of the growing installed-base of multicore systems in the

market today, and future-proof your applications now for the

manycore systems coming soon.

Download and register for the user forums at:
www.intel.com/software/ParallelStudioBeta/

www.intel.com/software/products/systemrequirements/
http://software.intel.com/en-us/articles/intel-parallel-studio/
http://www.intel.com/software/ParallelStudioBeta/

