Intel® Parallel Studio

Product Brief Parallelism for your Development Lifecycle
Intel® Parallel Studio Intel® Parallel Studio brings comprehensive parallelism to C/G-+ Microsoft Visual
Studio* application development. Intel Parallel Studio was created in direct
response to the concerns of software industry leaders and developers. From
the way the products work together to support the development lifecycle to
their unique feature sets, parallelism is now easier and more viable than ever
before. The tools are designed so those new to parallelism can learn as they
go, and experienced parallel programmers can work more efficiently and with
more confidence. Intel Parallel Studio is interoperable with common parallel
Pa ra I IEI programming libraries and API standards, such as Intel® Threading Building
- Studio Blocks and OpenMP* and provides an immediate opportunity to realize the
benefits of multicore platforms.

“The new analysis and profiling tools in Intel® Parallel Studio make the
new Envivio 4Caster* series transcoder’s development faster and
more efficient. In particular, the use of Intel® Parallel Inspector and
Intel® Parallel Amplifier shortens our overall software development time
by increasing the code’s reliability and its performance in a multicore,
multithreaded environment. At the qualification stage, the number of
dysfunctions is reduced due to a safer implementation, and the bug
tracking becomes easier too. Intel Parallel Studio globally speeds up our
software products’ time-to-market”

Eric Rosier
V.P. Engineering
Envivio

Intel® Parallel Studio Tools

Intel® Parallel Amplifier:
Quickly find bottlenecks and tune parallel applications for scalable
multicore performance.

= Find application hotspots and drill down to the source code

= Tune parallel applications for scalable performance using
concurrency analysis

= Use locks & waits analysis to find critical waits that limit parallel
performance

= Compare results to quickly see what changed, or find regressions

Intel® Parallel Composer:
Develop effective applications with a C/CG-+ compiler and advanced
threaded libraries.

= Build with Intel® G-+ Compilers for 32-bit processors, a cross-
compiler to create 64-bit applications on 32-bit systems, and a
native 64-bit compiler

= Code with Intel® Integrated Performance Primitives (Intel® IPP), a
foundation-level set of building blocks for threaded applications
in engineering, financial, digital media, data processing, and
mathematics. Intel IPP can also be used with the Microsoft Visual
CG++* compiler

= Debug with Intel® Parallel Debugger Extension, which integrates with

the Microsoft Visual Studio debugger

= Code with Intel® Threading Building Blocks (Intel® TBB), an award-
winning G-+ template library that abstracts threads to tasks to
create reliable, portable, and scalable parallel applications. Intel TBB
can also be used with the Microsoft Visual G-+ compiler

Intel® Parallel Inspector:

Ensure application reliability with proactive parallel memory and
threading error checking.

= Find threading-related errors such as deadlocks and data races

= Find memory errors such as memory leaks and corruption

. 3
Find hotspots e/
>
a N o)
Code, debug, G /)
and build with ~
the Intel® Parallel < \
Composer
\)
a -)
Verify with ,h:p
the Intel® Parallel ~
Inspector
k J
i N)
Tune with the w
\——— Intel® Parallel —
Amplifier
\)

Figure 1. Intel® Parallel Studio workflow

To fully utilize the power of Intel® multicore processors and achieve
maximum application performance on multicore architectures, you
must effectively use threads to partition software workloads. When
adding threads to your code to create an efficient parallel application,
you will typically encounter the following questions:

3. Which parts of your application are most appropriate to parallelize
to obtain the best performance gains and avoid memory conflicts?

b. What programming model and specific threading techniques are
most appropriate for your application?

. How do you detect and fix threading and memory errors, which
are hard to reproduce because the threaded software runsin a
non-deterministic manner, where the execution sequence depends
on the run?

d. How can you actually boost performance of your threaded
application on multicore processors and make the performance
scale with additional cores?

Intel Parallel Studio addresses the issues listed above.

The list below shows the Intel Parallel Studio tools and provides a brief
description of how they address the above issues.

7)) Intel®
Parallel
Composer

Intel C++ Compiler, as well as comprehensive Addresses
threaded libraries and a debugger extension, issues B
to help you quickly create and debug threaded and C.
C/C++ applications in the Microsoft Visual Studio
development environment. The tool enables

you to choose the parallel programming model

most appropriate to your application.

I 2 Intel® Designed for multithreaded application Addresses
s ‘r development to facilitate the transition issue C.
‘/ Parallel to multiple threads by making debugging,

INSpector testing, and validation easier.

Intel® Performance analysis and tuning tool for Addresses
! Parallel parallel applications to optimize performance issues A

. on multiple cores. and D.
Amplifier

: =2l ——— Choose analysis type
Flle Edit View Project Buld Debug Tools Test Window Community Help
Ho R e ™ - N Es T = .
= o i i
T TeT—— i View call stack bottom-up or top-down
r01hs ~ ¥ | Call Stack - o x
= CPU tir H
5[Hotspos:Boftom up By ToTepots: Top down Treo| - = _— C(all stacks for selected function
2 selected stacks
Function ‘ Module CPUTIme + & Viewing 4 1of2 b ./
=i Pl g Contrbution of the urrent cal stack . .
CPUTine —— (CPU times for hot functions
GenScanline <-Paintline <- GenDisplay <- GetMod| Fractal.exe 1.571s (I 75 BT selection (1.571s of 1.991s)
Paintiine <- GenDisplay <- GetModuleFileNameA | Fractal.exe 0.420s [
Fractal.exe!GenColors - fractal.cpp [&
HKiFastSystemCallRet ntdl.dll 0.5665 (D . .
[ENtWaitForSingleObject ntall.di 0.03%8s | EZZE:ZE:?;:EZ“";EE‘?SL; d /—| Total elapsed and CPU time
®Paintline Fractal.exe 0.000s | S e
Fractal.exe!GenDisplay - fractal.cpp .. v,
SxJsolutio... |[ZProper... g;i%tack .
— —— .2 x| — Filter results
-
Selected: [19915 -
Sl B e w [l i 2 a0
r [Filter: 100% s shown | Modue:| [Al] [se] Thread: | fai 04 = || Logical CPU Count: 2
Ready

Figure 2. Hotspot Analysis: Where is my app spending time?

You might start by finding the functions in your application that consume most of the time. This is where to tune or add parallelism to make
your program faster. Intel Parallel Amplifier also shows the stack so you know how the function is being called. For functions with multiple calling
sequences, you can see if one of the call stacks is hotter than the others.

= B @ curee

Funiction i
_CallStack ¥ Module CPU Time + E
[JE_sadBx8_stride 16_c ¥EC_test_Debug.exe ||
[#JE_sad16x16_c XEC_test Debug.exe 5,736 (D
[+labs ¥EC_test_Debug.exe 1.653s 0
[#JE_sad16x8_c XEC_test Debug.exe 1.153s I
[#JE_sad_qgpel_stride16_16_16_c XEC_test Debug.exe 1.091s 0
[+ JE_sad8x 16_stride 16_c XEC_test Debug.exe 10685 0
[#JE_sad_qpel_stride16_8_16_c XEC_test Debug.exe 0.735 |
[#JE_sad_qpel_stride16_16_8 ¢ XEC_test Debug.exe 0.4125 |
[#void JE_Motion: :BestSeedSearch_EME_2{int,unsigned char =,int,int,int,int,int *,int *,int *,int =int *,|| XEC_test_Debug.exe 0.311s |
[#int JE_Motion: :getMVCost{int,int,int,int,int) XEC_test Debug.exe 0.3025 |

Selected: 10.2425 [w]
[i] i] [l]

CPU time (User) d 1of34 b

[11% of Selection (1.1525)

|

¥EC_test_Debug.exe!JE_sad8x ...
KEC_test_Debug.exelvoid JE_M ...
KEC_test_Debug.exelvoid JE_M ...
¥EC_test_Debug.exelint JE_Mot...
¥EC_test_Debug.exelint JE_Mot...

M

|Fi|her: 100% is shown | Module:| <all=

M Thread:| <all=

M Process: | <all=

¥EC_test_Debug.exelint JE_Mat .. M
Summary > 4 X
Elapsed Time:
8.076s
CPU Time: 25,7368
Logical CPU Count: 4

Figure 3. Hotspot Analysis view identifies functions with the highest CPU times.

The workflow diagram below depicts a typical usage model across all of the tools in Intel Parallel Studio. I you are just starting to add parallelism
to your application, finding hotpsots would be a great first step. If you have already added some parallelism or if your application has been
optimized, you could start by verifying error free code or by tuning.

Intel G++ Compiler:
Microsoft Visual Studio integration, Microsoft Visual C++ compatibility, and support for numerous parallel

programming APIs (Application Programming Interfaces)
All features in Intel Parallel Studio are seamlessly integrated into Microsoft Visual Studio 2005* and 2008.

#% NQueens - Microsoft Visual Studio

Ele Edit View Buld Debug Tools Test Window Help

I RREERA= | Intel Parallel Composer P B uselntelces - | R et S
B Frofie Hotspot| “i¢ Add Class... Suild Companent Selection I i My e E ERORE R Mol H
Solution Explorer -ng| 5 | Add New Ttem. .. Ctri+shifi+a fa.cpp| ng-tob.cpp | ng-openmp.cpp | StartPage hab 1"
P [E &y 5] addExistng Tem... Shift+alt+4 v|| v| g
[Solution NQuee Exdude From Project = (3
= [ng-openm e theet Fmemmeamion. 214 Besnes esmes &5
= A ngopen | Show AllFies)08 Intel Corporation. All Rights Reserved. %
& na-g Set as StartUp Project =
= (=g ng-openmp- >\?
8 ng-open Project Dependencies. . =
= [ngparexn Project Buid Order... allis
= (24 no-pare: 2
¢ ngg 55
2 -serial Intel Parallel Amplifier Project Properties...
= ng-tbb4ambda Properties...
= n-thbeintel
= (3 no-tob-intel
6] na-tob.cpp
£ (3 ngtobambdz
€9 ng-tib-lambida, cpp
Sclve the nguesns problem thk/lambda vezsion
)
|cselut... @ Tass . [igprope... | [|€ >
Output - ax
Shaw output from: Compiler Use =L A | = | 5]
Sclution f£ile "C:\Program Files\Intel\Compcser\2003\Samples‘en_ US\C++\NQueens\NQueens.sln" has been updated to use the Microsoft Visual C++ Compilex

Rebuild project "ng-tbb-lawbda" to ensure all intermedizte files are rebuilt with the new compiler

5 Code Definition Window | 281Call Browser ||;-| Output |

Ready n9 Col& Chs NS

4 a - f (e =]
14 start 2% NQueens - Microsoft ... R)% | 21pM

Figure 4. Intel® Parallel Composer integrates into Visual Studio*. The solution on display shows how to switch to the Intel® C++ compiler. You can easily
switch to Visual C++* from the Project menu or by right-clicking over the solution or project name.

Intel Threading Building Blocks: C++ library
for scalable parallelism

Intel Threading Building Blocks (Intel TBB) offers a rich methodology provides several functions and templates like parallel_for, parallel_
to express parallelism in a G++ program. Included in Intel Parallel Studio, ~ While, parallel_reduce, pipeline, parallel_sort, and parallel_scan, along
Intel TBB can be used with the Intel G-+ Compiler or with Microsoft with some concurrent containers to help improve productivity when
Visual G+ Intel TBBis a library that takes advantage of higher-level, developing parallelism in your code.

task-based parallelism that abstracts platform details and threading

specifics for performance and scalability. It uses a runtime-based 4)
programming model and provides parallel algorithms based on a void SerialApplyFoo(float a[], size_t n) {
template library similar to the standard template library (STL). for(size t i=0; il=n; ++i)

Foo(a[i]);
The Intel TBB task scheduler does the load balancing for you. With }
thread-based programming, you are often stuck dealing with load- L)

balancing yourself, which can be tricky to get right. After breaking
your program into many small tasks, the Intel TBB scheduler assigns
tasks to threads in a way that spreads out the work evenly for the
best scalability. The methodology already used in Cr+ is extended
by Intel TBB to realize simple parallelization concepts. Intel TBB

Figure 5A. Serial example

i Loop body as
function object

— Parallel algorithm

i |teration space

- p
class ApplyFoo { P
float *const my_ a;
public:
ApplyFoo(float *a) : my_a(a) {}
void operator()(const blocked range<size t>& range) const {
float *a = my_aj;
for(size_t i=range.begin(); i!=range.end(); ++i)
Foo(a[i]);
}
i
void ParallelApplyFoo(float a[], size_t n) { e—
parallel for(blocked range<size t>(0, n),
ApplyFoo(a),
auto_partitioner()); . —| Partitioning hint
S J

Figure 5B. Parallel version with Intel® TBB

Support for lambda functions

The Intel Compiler is the first G-+ compiler to implement lambda
functions in support of the working draft of the next G-+ standard
CG++0x. A lambda construct is almost the same as a function object in
G+ or a function pointer in C. Together with closures, they represent
a powerful concept because they combine code with a scope. For
example, it you have a G++ application that uses iterators for loops,
Intel TBB, with lambda support, will help implement templated loop
patterns.

The source code in Figure & below is an example of a function object
created by a lambda expression. Tighter G-+ and Intel TBB integration
allows the simplification of the functor operator() concept by using
lambda functions and closures to pass code as parameters.

a A
void ParallelApplyFoo(float a[], size t n) {

parallel for(blocked range<size t>(0, n),
[=](const blocked range<size t>& range) {

for(int i= range.begin(); i!=range.end();

++i)
Foo(a[i]);
b
auto_partitioner());
}
S J

Figure 6: Source code example of a lambda function

OpenMP 3.0*

OpenMP is an industry standard for portable multithreaded application
development. It is effective at fine-grain (loop-level) and coarse-

grain (function-level) threading. OpenMP 3.0 supports both data and
now task parallelism using a directives approach, which provides an
easy and powerful way to convert serial applications into parallel
applications, enabling potentially big performance gains from parallel
execution on multicore and symmetric multiprocessor systems.

When an application that has been written and built using OpenMP

iS Tun on a system with just one processor, the results are the same
as unmodified source code. Stated differently, the results you get are
the same as you would get from unmodified, serial-execution code.
This makes it easier for you to make incremental code changes, while
maintaining serial consistency. Because only directives are inserted
into the code, it is possible to make incremental code changes and
still maintain @ common code-base for your software as it runs on
systems that still have only one processor.

OpenMP is a single source code solution that supports multiple
platforms and operating systems. There is also no need to "hard-
code” the number of cores into your application because the OpenMP
runtime chooses the right number for you.

OpenMP 3.0 task queuing

Sometimes programs with irregular patterns of dynamic data or
complicated control structures, like recursion, are hard to parallelize
efficiently. The work queuing model in OpenMP 3.0 allows you

to exploitirregular parallelism, beyond that possible with OpenMP
20o0r25.

The task pragma specifies the environment within which the enclosed
units of work (tasks) are to be executed. When a task pragma is
encountered, the code inside the task block is conceptually queued
into the queue associated with the task. To preserve sequential
semantics, there is an implicit barrier at the completion of the task.
The developer is responsible for ensuring that no dependencies exist
or that dependencies are appropriately synchronized, either between
the task blocks, or between code in a task block and code in the task
block outside of the task blocks. An example is presented below in
Figure 7.

#pragma omp parallel

#pragma omp single

{

for(int i=0; i<size; it+) {

// try all positions in first row
// create separate array for each recursion
// started here

#pragma omp task
setQueen(new int[size], 0, 1i);
}

}

. J

Figure 7. Example of OpenMP 3.0* task queuing

In the example in Figure 7 above, we need only one task queue.
Therefore we need to set up the queue by invaking only one thread
(omp single). The setQueen calls are independent of each other and
therefore they fit nicely into the task concept. You might want to also
read about the Intel Parallel Debugger Extension, which makes it easy
to inspect the state of tasks, teams, locks, barriers, or taskwaits in
your OpenMP program in dedicated windows.

/ N\

Simple concurrency functions
Intel Parallel Composer offers four new keywords to help make parallel

programming with OpenMP easier. __taskcomplete, __task, __par, and

Jp—

__critical. In order for your application to benefit from the parallelism

made possible by these keywords, you specify the /Qopenmp compiler
option and then recompile, which links in the appropriate runtime
support libraries, which manage the actual degree of parallelism.
These new keywords use the OpenMP 3.0 runtime library to deliver
the parallelism, but free you from actually expressing it with OpenMP
pragma and directive syntax. This keeps your code more naturally
writtenin Cor G-+,

The keywords mentioned above are used as statement prefixes.

For example, we can parallelize the function, solve(), using __par.
Assuming that there is no overlap among the arguments, the solve()
function is modified with the addition of the __par keyword. With
no change to the way the function is called, the computation is
parallelized. An example is presented in Figure 8.

1 A
void solve() {

__par for(int i=0; i<size; i++) {

// try all positions in first row

// create separate array for each
recursion

// started here

setQueen(new int[size], 0, 1i);

}

}
N J

Figure 8. Example of __par, one of four simple concurrency functions,
new in the Intel® C++ Compiler in Intel® Parallel Studio

Intel Integrated Performance Primitives (Intel IPP)

Intel Parallel Composer includes Intel IPP, an extensive library of
multicore-ready, highly optimized software functions for multimedia,
data processing, and communications applications. It offers thousands
of optimized functions covering frequently used fundamental
algorithms in video coding, signal processing, audio coding, image
processing, speech coding, JPEG coding, speech recognition, computer
vision, data compression, image color conversion, cryptography/CAVP
validated, string processing/regular expressions, and vector/matrix
mathematics.

Intel IPP functions are fully thread-safe, and many are internally
threaded, to help you get the most out of today's multicore
Processors.

il s Y

Applications

Digital Media jj Web/Enterprise Data § Embedded
Scientific/Technical

Cross Platform
€/ C++API for Code
Re-Use

Intel® Integrated Performance Primitives

15 Function Domains

Communications & Data
Signal Processing

Images and

Video Processing

= Signal Processing * Data

" Audio Coding Compression

" Speech Coding * Cryptography

¢ \ideo Coding + Speech ¢ 5tring processing

 Computer Vision Recognition ¢ Matrix [Vector

 Ray-Tracing / et tor Algabra
Rendering Operations

" Image Processing
< Color comaersion
< JPEG / JPEGZ000

—

Optimized 32-bit & 64-bit
Multi-Core Performance

\ J

Optimize embarrassingly parallel loops

Algorithms that display data parallelism with iteration independence
lend themselves to loops that exhibit “embarrassingly parallel” code.
Intel Parallel Composer supports three techniques to maximize the
performance of such loops with minimal effort: Auto-vectorization,
use of Intel® optimized valarray containers, and auto-parallelization.
Intel Parallel Composer can automatically detect loops that lend
themselves to auto-vectorization. This includes explicit for loops
with static or dynamic arrays, vector and valarray containers, or user-
defined G++ classes with explicit loops. As a special case, implicit
valarray loops can either be auto-vectorized or directed to invoke
optimized Intel Performance Primitives library primitives. Auto-
vectorization and use of optimized valarray headers optimize the
performance of your application to take full advantage of processors
that support the Streaming SIMD Extensions.

In a moment, we'll look at how to enable Intel optimized valarray
headers. But first, let's look at Figure 10, which shows an example of
an explicit valarray, vector loops, and an implicit valarray loop.

4 N
valarray<float> vf(size), vfr(size);

vector<float> vecf(size), vecfr(size);

//log function, vector, explicit loop
for (int j = 0; j < size-1; j++) {
vecfr[j]=log(vecf[]j]);

}

//log function, valarray, explicit loop

for (int j = 0; j < size-1; j++) {
vir[jl=log(vE[]]);

}

//log function, valarray, implicit loop

vir=log(vf);

Figure 9. Intel® Integrated Performance Primitives is included in Intel®
Parallel Composer, a part of Intel® Parallel Studio, and features threaded
and thread-safe library functions over a wide variety of domains.

Figure 10. Source code above shows examples of explicit valarray,
vector loops and an implicit valarray loop.

To use optimized valarray headers, you need to specify the use of Intel
Integrated Performance Primitives as a Build Component Selection
and set a command line option. To do this, first load your project into
Visual Studio and bring up the project properties pop-up window.

In the "Additional Options” box, simply add “/Quse-intel-optimized-
headers" and click "OK

ng-openmp Property Pages

=] Corfiguration Manager.
[© Corfigumtion Froperies Al Options:

Geners| Jc 02 /D "WIN32" /D "_DEBUG" /D *_CONSOLE™ /D "_UNICODE" /D "UNICODE" fEHsc /MDd fGS ffp:fast -]
Debugging [Fo'Debug/" W3 fnologo Mip64 /ZI jQopenmp [debug:parallel
C

Configuration: [#ctive(Dsbug) | Platfom: [Activetving2)

General
Debug
Cptimization
Freprocsssor
Cods Generation
Language
Precompied Headers
Output Files
Browse Infomation
Diagnostics
Advanced
Command Lins
Lirker e
Waniest Tool
Browse Infomation
Buid Events
1- Custom Buid Step

Additional Optians:

B E

JQuse-intel-optimized-headers| |

oK Cancel | Zpply \

Figure 11. Adding the command to use optimized header files to a
command line in Visual C++*

Next, from the Project menu, open the Build Component Selection
pop-up. In the box to the right of “Intel Integrated Performance
Primitives,” select "“Common" and click “OK." Figure 12 presents a
picture of this. With this done, you can rebuild your application and
check it for performance and behavior as you would when you make
any change to your application.

ng-openmp - Build Component Selection [2]
Project Configuration: Project Platform:
|Dehug j | J
Version to use with this configuration: Default Suite version:

| |

Intel Performance Libraries to use with this configuration

Intel Integrated Performance Primitives:

Intel Threading Building Blocks: Mg -

oK | Cancel Apply

Figure 12: Telling Visual Studio* to use Intel® IPP

Intel Parallel Debugger Extension

Intel Parallel Composer includes the Intel Parallel Debugger Extension
which, after installation, can be accessed through the Visual Studio
Debug pull-down menu (see Figure 13 below).

o e s e)

| e _pr_siob
| AT 2l i3 gl

FINL 0 [T TN Y e

by

sees [

L ﬂ “serQueen{nl] qussns, in row, ink col, ink id)

{should print allowed to print at & Cime
aresEEs | ¥ 2

p #0luTion cOunter 13 moT scomic

CHHELE

11

Fio
Sh+FlL |
= LT .’

|| Thread Data Sharing Detaction

ga: Eveck on Re-entrank Call...
. E-J! Seriche P el Regions
ot reiocits QUTPUEY [o

v | 43 Thvesd pata sharing Evaris
{
| Thosed Dot Shering Fiters

Dpan M

3 Fd SEE Regasters

ltowtl, 1, 1d):

| Bveid solven) ¢
| inE myid

2l

Figure 13. Intel® Parallel Debugger Extension is accessible from the
Debug pull-down menu in Microsoft Visual Studio*.

“ Problem Sets 53 |:l Sources and Stacks| +- |Q 0hservations| |:| Summaries/Subsets

Pro.. = Seve... Problem Sources Modules Chject Size
P1) Incorrect memary access FF_Stack.cpp; JE_Engine.cpp ¥EC_test_Debug.exe
P2] Incorrect memory access JE_FrameBuffer.cpp; JE_SliceUtils.cpp ¥EC_test_Debug.exe
P3 @ Incorrect memory access JE_FrameBuffer.cpp; JE_SliceUtils.cpp ¥EC_test Debug.exe
P4 & Incorrect memory access JE_FrameBuffer.cpp; JE_SliceUtils.cpp ¥EC_test_Debug.exe
F5) Incorrect memory access JE_FrameBuffer.cpp; JE_SliceUtils.cpp ¥EC_test Debug.exe
P&] Incorrect memory access JE_FrameBuffer.cpp; JE_SliceUtils.cpp ¥EC_test_Debug.exe
P7) Incorrect memory access JE_FrameBuffer.cpp; JE_SliceUtils.cpp ¥EC_test Debug.exe
Pa) Incorrect memary access chkstk. asm MSVCRS0D.dl
4 Memory leak JE_Frame.cpp XEC_test_Debug.exe
P10 @ Memory leak JE_Macroblock.cpp ¥EC_test Debug.exe 2656800

=

|

Observations in Problem Set: Memory leak

Observa... Description Source Function Module 0
HX11 Allocation site JE_Frame.cpp:961 initStructuresAndBuffers ¥EC_test_Debug.exe 1
“ Problem Sets 54 |:b Sources and Stacksl + |a Observations |:| Summaries/Subsets

Problem Sets

Problem Sources Modules Ohbject Size

Incorrect memory access

=

Observations in Problem Set: Incorrect memory access El
Cbserva... Description = Source Function Module o]
#Hx1 Invalid read chkstk.asm: 99 _chkstk MSVCRI0D.dll

Figure 14. Before-and-after view of Intel® Parallel Inspector
(Incorrect memory accesses and leaks fixed)

The Intel Parallel Debugger Extension provides you with additional insight and access to shared data and data dependencies in your parallel
application. This facilitates faster development cycles and early detection of potential data access conflicts that can lead to serious runtime
issues. After installing the Intel Parallel Composer and starting Visual Studio, you can use the Intel Parallel Debugger Extension whenever your
applications are taking advantage of Single Instruction Multiple Data (SIMD) execution and get additional insight into the execution flow and
possible runtime conflicts it your parallelized application uses OpenMP threading.

To take advantage of the advanced features of the Intel Parallel Debugger Extension, such as shared data event detection, function re-entrancy
detection, and OpenMP awareness including serialized execution of parallelized code, compile your code with the Intel Compiler using the
/debug:parallel option for debug info instrumentation.

For more information, check out the “Intel® Parallel Debugger Extension” white paper at http:/software.intel.com/en-us/articles/parallel-
debugger-extension/. This paper goes into many more details and benefits that the Debugger Extension can bring to you, and how to best take
advantage of them.

http://software.intel.com/en-us/articles/parallel-debugger-extension/
http://software.intel.com/en-us/articles/parallel-debugger-extension/

Intel Parallel Inspector

Find threading and memory errors

-+ |E’I Souroesl - |ﬁ Details|
ProblemSets

IDa Problem Sources | Modules Object Size
P1 Uninitalized memory access main.cpp update_system.exe
p2 Uninitalized memory access main.cpp update_system.exe
P3 Mismatched deallocation main.cpp update_system.exe

main.cpp update_system.exe
main.cpp update_system.exe
main.cpp update_system.exe
main.cpp update_system.exe
main.cpp update_system.exe
main.cpp update_system.exe
main.cpp update_system.exe 12

Mismatched deallocation
Invalid memory access
Invalid memory access
Invalid memary access
Invalid memoary access
Memary leak

Memary leak

DO00000O00OL Y

Observations in Problem Set: Uninitalized memory access

Description & | Source Function Module
B main.cpp:44 doitx
main.cpp:50 daitx

update_system.exe

update_system.exe

Figure 15. Find memory errors

Quickly finds memory errors including leaks and corruptions in single and
multithreaded applications. This decreases support costs by finding memory
errors before an application ships.

[0 S| ¢ (@ o]
Problem Sets
ID & % Problem | Sources
Data race

Modules

Banner.exe

Object Size

insp_banner.cpp

P2 @ Datarace insp_banner.cpp Banner.exe
Observationsin Problem Set: Datarace
D Desc... & Source Function Module

#X4 Write insp_banner.cpp:101 StuffSpace Banner.exe
#X5 Write insp_banner.cpp; 101 StuffSpace Banner.exe
#HX6 Write insp_banner.cpp:85 Stuffletter Banner.exe
HXT Write insp_banner.cpp:85 Stuffletter Banner.exe

Figure 16. Find data races

Accurately pinpoints latent threading errors including deadlocks and data
races, which helps reduce stalls and crashes due to common errors not found
by debuggers and other tools.

a Interpret Results

Observations

Function Module
Uninitalized memory access 5 main.cpp: 44 doitx update_system.exe

S5 B main.cpp:45 doitx upd; 1.Ex2
update_system.exe

ID | & | Description Prablem
X3 @ Allocation site

Source &

Invalid memory access
Invalid memory access

[main.cpp:47 doitx
X4 @ Read Uninitalized memary access E main.cpp:49 doitx update_system.exe
X5 @ Read Uninitalized memary access ¥ main.cpp:50 doitx update_system.exe
x6 @ Read Invalid memory access [main.cpp:54 doibx update_system.exe

Figure 17. Intuitive grouping

Intuitively guides the developer by grouping related issues together. When you
fix one problem, Intel Parallel Inspector shows you all of the related locations
where the same fix needs to be applied.

Configure Analysis

- Does my target leak memory? {default)
Does my target have memory access problems?
- Where are the memory access problems?

- Where are all the memory problems Inspector can find?

Figure 18. Configure depth of analysis

Simple analysis configuration enables developers to control the depth of
analysis vs. execution time.

overvow| -+ [T « | e

43

3 = = pl0];

a0 c=plll;

51

52 free(pl;

53

54 e = pl2l;

55

36 p = (char*imalloci3);

L4 11}

42 woid doitx()

43
Cri ! char* p = (char*)malloci4);
45 pld] = "a';
45
47 char ¢ = pl[&];
45
49 c = pl0l;
50 o =plll;
61
£ iii

ID Description & Source Function Module
X3 Allocationsite B main.cpp:44 doitx update_system.exe
X5 Read P main.cpp:50 doitx update_system.exe

Figure 19. Error identification mapped to source code

Click on an identified problem to reveal source code to go directly to the
offending code to quickly make changes.

Private suppressions: | Delete problems

Mark problems

Do not use suppressions

Figure 20. Result suppression

Result suppression reduces the information that has to be analyzed by
suppressing results that are not relevant.

Intel Parallel Amplifier

Get the best performance out of multicore

-

& Parallel Amplifier - Microsoft Visual Studia A& Tune core utilization
Fle Edit View Project Build Debug Took Test Window Community Help _ _
(il g @ s B0 s DL rekease 1 wna2 o) . Green = Ideal Red = Poor

: (7] [Profile Concurrency -Where ism - 00 3 b Compare @B # =
=23 [ECoEs -2 %8l _—~—— Length of bar is time, color is utilization
=@ e up] | & cor y: Top-down Tree| | Elapsed Time: _é:/ g . . .
: = 25325 while the function is running
Function ™ s CPU Time by Utiization CPUTime: o
-Bottom-up Tree Logical CPU Coute 2|2
153 1 G I
Fractal.exe 1555 (I @ m— Average CPU utilization
Paintiine <- GenDisplay <- GetMol Fractal.exe 0.235: (D E
[KiFastSystemCallRet ntdl.dil 0.622s (I &
[strnicmy MSYCRB0.d 0.0165 | o = . .
TF Limegsteiangfriddin MECTE.d1 0.0t | E = Most of the time this app only uses
5 one core
=
elected: ¥ T o . .
fs1] = lsl [@ i __-_ .| T~ (all stack information (not shown)
[
r [Filter: 100% & shown | Modue:| [Al] [s#] Thread: an v % = Simultaneous Running Threads is available
Ready

N

Figure 21. Concurrency Analysis: When are cores idle?

Like hotspot analysis, concurrency analysis finds the functions where you are spending the most time. But it also shows you how well you
are utilizing multiple cores. Color indicates the core utilization while the function is running. A green bar means all the cares are working. A red
bar means cores are underutilized. When there is red, add parallelism and get all the cores working for you. This helps you ensure application
performance scales as more cores are added.

 Parallel Amplifier - Microsoft Visual Studio M=% Length of bar is wait time, color
Ele Edt Vew Project Buld Debug Tooks Test Window Community Help . - ,
e P R L O G | b peesse g wnz .o . is number of cores utilized during
E ofie Locks and Waits -here = [[l 3 dB Compare B F o | the wait
. 01hs | r02cc 03w ~ > |[Summary -1x|g
[Locks and Waits: Bottom-up| & Locks and Waits: Top-down Tree | = Elapsed Time: g Waiti ith q ilized
s g — aiting with underutilized cores
Sync Cbject Name & Wait Time by Utlization e Wait Bl A Waiting Tme: e g
- Wait Function ~| || sync Object Type '9/ Logical CPU Count: 2
~Bottomup Tree Wi @roor Mok Wiced Wove T 3] hurts performance
*+ Multiple Objects Constant 2159 — A i i
= Critical Section Oxed6fodfa | Critical Section 1105 [N ./7;' T
#GenScanLine Critical Section 1,105 (I 758 K | i i i
EThread 0x435f6eaa Thread 0012 | 1 . =1 Walt COUnt helps Identlfy
[#Message Boxes Constant 0.014 | o = . . .
(#Menu Msas Corstant 0.000s | 1|l 5 K |nterest|ng walts
[#Crifical Section 0x6953d9d3 | Critical Section 0.000¢ | 1| & |2 |
#None 0x7c5dcd0S None 0.000s | 3 =
o
Selected: 2.15% 138 T 3 g
an [2]=] I} 2] JOEN oo | ldeal | Over NN
¢ [Fitter: 100% ks shown | Wait Module:| [Al] v % = Simultaneous Running Threads
Ready

N

Figure 22. Locks and Waits Analysis: Where are the bad waits?

Waiting too long on a lock is @ common source of performance problems. It's not bad to wait while all the cores are busy (green). It is bad to wait
when there are unused cores available (red).

\

% Parallel Amplifier - Microsoft Visual Studio

Click to go to the next-hottest spot
in this function

—i (Click to open the file editor at
this location

| _— When you double-click a function in
any analysis, it opens the source to the
hottest spot

Fle Edt Vew Project Buld Debug Tools Test Window Community Help

P e @ 6 e e D L b Release - Win32

Profie Hotspots - Whereismyp = B_E1_ 3¢ dl Compare @8 M

ro1hs - x |[Callstack +1x
21| Hotspots: Bottom.up | &ywoTspots: Top-down Tree| [B) Fractal.cpp }

— 2 selected stacks
PreB 5 oe— (3 v 1 10f2 b

Line Source CPUTIme %] g Contribution of the aumrent call stack
174 for (unsigned int w=0; x < imsgeWidth; mtt GETE

175 {

176 c.real = minresl + x*realScale; 0.016s | | | [Fractal.exe!GenCaloze—tra

L7 . ErasmtereGenscanLine - fractal.c...
178: o = 1.5555 [N @1 . oo Aot

78 i2(gCalerbepch == 32) { Fractal exelGenDisplay - fractal.cop .. [w
180 LineBuffer[x] [threadNum] = (coloxr

181) xJsolutio... | ZProper... il Stack
182 else Summary -1 x
183 LineBuffer[x] [threadNum] = (WORD) (

) Total Selected: 1,555 (v | Eoral T
A 3¢ M > 2.2385
al ‘ B la] T X1

r [Filter: 100% & shown | Modue:| [Al] [s#] Thread: an [v] ¥ = || Logical CPU Count: 2
Ready

Figure 23. Source View: See the results on your source.

Source view shows you the exact location on your source. Just double-click on the function names in any of the analysis views to see the source.

-

\

% Parallel Amplifier - Microsoft Visual Studio

Compare any two previous results

_——— See the times and the difference for

each function

——— Use any of your previous results

Summary of the change

| SglutisaExpiBrer - Solution .. » & X
Bl
= [My Amplifier Results |A
5] roths.ampl
2l ro2ce.ampl .—'I'El
L) ro3hw.ampl
L) rozhs.ampl
. 3 My Inspector Resuits %)
<] Im e
r:}]smun... L}Pmpe... \QCEHSL..
Summary ~1x
Result 1 Result 2
Blapsed Time: ./
2.152s 2.375s
CPU Time:
2377 2.5285
Logical CPU Count:
H H

File Edit Wiew Project Build Debug Tools Test Window Community Help

R N e = N N S e = =) (N, T
Frofie Hotspots - Whereismyp - [01 3¢ qb::ompareﬁ 8

rO1hs r02hs ' r01hs-r02hs| - %
=[® Hotspots: ottomup| /
Function [w] CPUTmeResut1 ¥ CPU Time:Result 2 CPU Time:Difference &

CalculatePixel 0s 1575 (|

GenerateScantine 0s 0.104]

NwaitForSingleObj 0.400s u] 0.4665 0]

KFastSystemCalRe 0.5328 (5] 0,583 (]

RHEnterCriticalSect 0.0108 | L3

CopyBufferTovideo 0.011s | L3

Waitf ipleCbj 0.021s | [

ine 1,403 (=] [

Selected: 23775 2.5285 -0.151s
all (el)
 [Filter: 100% s shown | Modue:| A1) [se] Trveac | [~] ® =
Ready

~

Figure 24. Compare Results: Quickly see what changed.

This gives you a fast way to check progress when tuning and also makes a handy regression analysis.

Designed for today's applications and tomorrow’s
software innovators. Everything you need to design
and build parallel programs in Visual Studio*

= Fully integrated in Microsoft Visual Studio
= Supports latest specifications of OpenMP*

= Prepares legacy serial and new parallel applications to
take advantage of multicore and be ready to "forward
scale” for manycore

- Preserve investments in source code and development
environments

- Take advantage of the rapidly growing installed base
of multicore systems

=Intel® Parallel Studio tools are available for each stage of
the development lifecycle, from design assistance to coding
and debugging to verifying error-free code to tuning

= Includes built-in guidance and recommendations, access to
threading libraries containing thousands of code options

= Simplifies threading and provides capabilities to reduce
bugs and system performance issues, helping you to
bring better, feature-rich products to market faster

= Designed for architects and developers, leveraging decades
of Intel experience providing software development
products to help implement technical applications,
databases, compute intensive applications, and threaded
applications for high performance computing (HPC)

System Requirements

= Microsoft Visual Studio

= For the latest system requirements, go to
www.intel.com/software/products/systemrequirements/

Support

Intel Parallel Studio products include access to community
forums and a knowledge base for all your technical
support needs, including technical notes, application
notes, documentation, and all product updates.

For more information, go to
http://software.intel.com/sites/support/
Beta Versions Available Now

Download and register for the user forums at:
www.intel.com/software/ParallelStudioBeta/

©2009, Intel Corporation. All rights reserved. Intel, the Intel logo, and Intel Core are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.
0209/BLA/CMD/PDF

321552-001

www.intel.com/software/products/systemrequirements/
http://software.intel.com/sites/support/
http://www.intel.com/software/ParallelStudioBeta/

