
Parallelism for your Development Lifecycle
Intel® Parallel Studio brings comprehensive parallelism to C/C++ Microsoft Visual
Studio* application development. Intel Parallel Studio was created in direct
response to the concerns of software industry leaders and developers. From
the way the products work together to support the development lifecycle to
their unique feature sets, parallelism is now easier and more viable than ever
before. The tools are designed so those new to parallelism can learn as they
go, and experienced parallel programmers can work more efficiently and with
more confidence. Intel Parallel Studio is interoperable with common parallel
programming libraries and API standards, such as Intel® Threading Building
Blocks and OpenMP*, and provides an immediate opportunity to realize the
benefits of multicore platforms.

Product Brief
Intel® Parallel Studio

“The new analysis and profiling tools in Intel® Parallel Studio make the

new Envivio 4Caster* series transcoder’s development faster and

more efficient. In particular, the use of Intel® Parallel Inspector and

Intel® Parallel Amplifier shortens our overall software development time

by increasing the code’s reliability and its performance in a multicore,

multithreaded environment. At the qualification stage, the number of

dysfunctions is reduced due to a safer implementation, and the bug

tracking becomes easier too. Intel Parallel Studio globally speeds up our

software products’ time-to-market”.
Eric Rosier
V.P. Engineering
Envivio

Intel® Parallel Studio

Intel® Parallel Studio Tools

Intel® Parallel Amplifier:
Quickly find bottlenecks and tune parallel applications for scalable

multicore performance.

Find application hotspots and drill down to the source code•	

Tune parallel applications for scalable performance using •	

concurrency analysis

Use locks & waits analysis to find critical waits that limit parallel •	

performance

Compare results to quickly see what changed, or find regressions •	

Intel® Parallel Composer:
Develop effective applications with a C/C++ compiler and advanced

threaded libraries.

Build with Intel® C++ Compilers for 32-bit processors, a cross- •	

compiler to create 64-bit applications on 32-bit systems, and a

native 64-bit compiler

Code with Intel® Integrated Performance Primitives (Intel® IPP), a •	

foundation-level set of building blocks for threaded applications

in engineering, financial, digital media, data processing, and

mathematics. Intel IPP can also be used with the Microsoft Visual

C++* compiler

Debug with Intel® Parallel Debugger Extension, which integrates with •	

the Microsoft Visual Studio debugger

Code with Intel® Threading Building Blocks (Intel® TBB) , an award- •	

winning C++ template library that abstracts threads to tasks to

create reliable, portable, and scalable parallel applications. Intel TBB

can also be used with the Microsoft Visual C++ compiler

Intel® Parallel Inspector:
Ensure application reliability with proactive parallel memory and

threading error checking.

Find threading-related errors such as deadlocks and data races•	

Find memory errors such as memory leaks and corruption•	

Figure 1. Intel® Parallel Studio workflow

To fully utilize the power of Intel® multicore processors and achieve

maximum application performance on multicore architectures, you

must effectively use threads to partition software workloads. When

adding threads to your code to create an efficient parallel application,

you will typically encounter the following questions:

a. Which parts of your application are most appropriate to parallelize

to obtain the best performance gains and avoid memory conflicts?

b. What programming model and specific threading techniques are

most appropriate for your application?

c. How do you detect and fix threading and memory errors, which

are hard to reproduce because the threaded software runs in a

non-deterministic manner, where the execution sequence depends

on the run?

d. How can you actually boost performance of your threaded

application on multicore processors and make the performance

scale with additional cores?

Intel Parallel Studio addresses the issues listed above.

The list below shows the Intel Parallel Studio tools and provides a brief

description of how they address the above issues.

Intel®
Parallel
Composer

Intel C++ Compiler, as well as comprehensive
threaded libraries and a debugger extension,
to help you quickly create and debug threaded
C/C++ applications in the Microsoft Visual Studio
development environment. The tool enables
you to choose the parallel programming model
most appropriate to your application.

Addresses
issues B
and C.

Intel®
Parallel
Inspector

Designed for multithreaded application
development to facilitate the transition
to multiple threads by making debugging,
testing, and validation easier.

Addresses
issue C.

Intel®
Parallel
Amplifier

Performance analysis and tuning tool for
parallel applications to optimize performance
on multiple cores.

Addresses
issues A
and D.

Tune with the
Intel® Parallel
Amplifier

Verify with
the Intel® Parallel
Inspector

Code, debug,
and build with
the Intel® Parallel
Composer

Find hotspots

Figure 2. Hotspot Analysis: Where is my app spending time?

Figure 3. Hotspot Analysis view identifies functions with the highest CPU times.

You might start by finding the functions in your application that consume most of the time. This is where to tune or add parallelism to make

your program faster. Intel Parallel Amplifier also shows the stack so you know how the function is being called. For functions with multiple calling

sequences, you can see if one of the call stacks is hotter than the others.

The workflow diagram below depicts a typical usage model across all of the tools in Intel Parallel Studio. If you are just starting to add parallelism

to your application, finding hotpsots would be a great first step. If you have already added some parallelism or if your application has been

optimized, you could start by verifying error free code or by tuning.

Choose analysis type

View call stack bottom-up or top-down

Call stacks for selected function

CPU times for hot functions

Total elapsed and CPU time

Filter results

void SerialApplyFoo(float a[], size_t n) {

 for(size_t i=0; i!=n; ++i)

 Foo(a[i]);

}

Figure 4. Intel® Parallel Composer integrates into Visual Studio*. The solution on display shows how to switch to the Intel® C++ compiler. You can easily
switch to Visual C++* from the Project menu or by right-clicking over the solution or project name.

Figure 5A. Serial example

Intel C++ Compiler:
Microsoft Visual Studio integration, Microsoft Visual C++ compatibility, and support for numerous parallel
programming APIs (Application Programming Interfaces)
All features in Intel Parallel Studio are seamlessly integrated into Microsoft Visual Studio 2005* and 2008.

Intel Threading Building Blocks: C++ library
for scalable parallelism
Intel Threading Building Blocks (Intel TBB) offers a rich methodology

to express parallelism in a C++ program. Included in Intel Parallel Studio,

Intel TBB can be used with the Intel C++ Compiler or with Microsoft

Visual C++. Intel TBB is a library that takes advantage of higher-level,

task-based parallelism that abstracts platform details and threading

specifics for performance and scalability. It uses a runtime-based

programming model and provides parallel algorithms based on a

template library similar to the standard template library (STL).

The Intel TBB task scheduler does the load balancing for you. With

thread-based programming, you are often stuck dealing with load-

balancing yourself, which can be tricky to get right. After breaking

your program into many small tasks, the Intel TBB scheduler assigns

tasks to threads in a way that spreads out the work evenly for the

best scalability. The methodology already used in C++ is extended

by Intel TBB to realize simple parallelization concepts. Intel TBB

provides several functions and templates like parallel_for, parallel_

while, parallel_reduce, pipeline, parallel_sort, and parallel_scan, along

with some concurrent containers to help improve productivity when

developing parallelism in your code.

class ApplyFoo {

 float *const my_a;

public:

 ApplyFoo(float *a) : my_a(a) {}

 void operator()(const blocked_range<size_t>& range) const {

 float *a = my_a;

 for(size_t i=range.begin(); i!=range.end(); ++i)

 Foo(a[i]);

 }

};

void ParallelApplyFoo(float a[], size_t n) {

 parallel_for(blocked_range<size_t>(0, n),

 ApplyFoo(a),

 auto_partitioner());

void ParallelApplyFoo(float a[], size_t n) {

 parallel_for(blocked_range<size_t>(0, n),

 [=](const blocked_range<size_t>& range) {

 for(int i= range.begin(); i!=range.end();

++i)

 Foo(a[i]);

 },

 auto_partitioner());

}

Figure 5B. Parallel version with Intel® TBB

Figure 6: Source code example of a lambda function

Support for lambda functions
The Intel Compiler is the first C++ compiler to implement lambda

functions in support of the working draft of the next C++ standard

C++0x. A lambda construct is almost the same as a function object in

C++ or a function pointer in C. Together with closures, they represent

a powerful concept because they combine code with a scope. For

example, if you have a C++ application that uses iterators for loops,

Intel TBB, with lambda support, will help implement templated loop

patterns.

The source code in Figure 6 below is an example of a function object

created by a lambda expression. Tighter C++ and Intel TBB integration

allows the simplification of the functor operator() concept by using

lambda functions and closures to pass code as parameters.

OpenMP 3.0*
OpenMP is an industry standard for portable multithreaded application

development. It is effective at fine-grain (loop-level) and coarse-

grain (function-level) threading. OpenMP 3.0 supports both data and

now task parallelism using a directives approach, which provides an

easy and powerful way to convert serial applications into parallel

applications, enabling potentially big performance gains from parallel

execution on multicore and symmetric multiprocessor systems.

When an application that has been written and built using OpenMP

is run on a system with just one processor, the results are the same

as unmodified source code. Stated differently, the results you get are

the same as you would get from unmodified, serial-execution code.

This makes it easier for you to make incremental code changes, while

maintaining serial consistency. Because only directives are inserted

into the code, it is possible to make incremental code changes and

still maintain a common code-base for your software as it runs on

systems that still have only one processor.

OpenMP is a single source code solution that supports multiple

platforms and operating systems. There is also no need to “hard-

code” the number of cores into your application because the OpenMP

runtime chooses the right number for you.

Loop body as

function object

Parallel algorithm

Iteration space

Partitioning hint

void solve() {

 __par for(int i=0; i<size; i++) {

 // try all positions in first row

 // create separate array for each

recursion

 // started here

 setQueen(new int[size], 0, i);

 }

}

#pragma omp parallel

#pragma omp single

{

 for(int i=0; i<size; i++) {

 // try all positions in first row

 // create separate array for each recursion

 // started here

#pragma omp task

 setQueen(new int[size], 0, i);

 }

}

Simple concurrency functions
Intel Parallel Composer offers four new keywords to help make parallel

programming with OpenMP easier: __taskcomplete, __task, __par, and

__critical. In order for your application to benefit from the parallelism

made possible by these keywords, you specify the /Qopenmp compiler

option and then recompile, which links in the appropriate runtime

support libraries, which manage the actual degree of parallelism.

These new keywords use the OpenMP 3.0 runtime library to deliver

the parallelism, but free you from actually expressing it with OpenMP

pragma and directive syntax. This keeps your code more naturally

written in C or C++.

The keywords mentioned above are used as statement prefixes.

For example, we can parallelize the function, solve(), using __par.

Assuming that there is no overlap among the arguments, the solve()

function is modified with the addition of the __par keyword. With

no change to the way the function is called, the computation is

parallelized. An example is presented in Figure 8.

OpenMP 3.0 task queuing
Sometimes programs with irregular patterns of dynamic data or

complicated control structures, like recursion, are hard to parallelize

efficiently. The work queuing model in OpenMP 3.0 allows you

to exploit irregular parallelism, beyond that possible with OpenMP

2.0 or 2.5.

The task pragma specifies the environment within which the enclosed

units of work (tasks) are to be executed. When a task pragma is

encountered, the code inside the task block is conceptually queued

into the queue associated with the task. To preserve sequential

semantics, there is an implicit barrier at the completion of the task.

The developer is responsible for ensuring that no dependencies exist

or that dependencies are appropriately synchronized, either between

the task blocks, or between code in a task block and code in the task

block outside of the task blocks. An example is presented below in

Figure 7.

In the example in Figure 7 above, we need only one task queue.

Therefore we need to set up the queue by invoking only one thread

(omp single). The setQueen calls are independent of each other and

therefore they fit nicely into the task concept. You might want to also

read about the Intel Parallel Debugger Extension, which makes it easy

to inspect the state of tasks, teams, locks, barriers, or taskwaits in

your OpenMP program in dedicated windows.

Figure 7. Example of OpenMP 3.0* task queuing

Figure 8. Example of __par, one of four simple concurrency functions,
new in the Intel® C++ Compiler in Intel® Parallel Studio

Optimize embarrassingly parallel loops
Algorithms that display data parallelism with iteration independence

lend themselves to loops that exhibit ”embarrassingly parallel” code.

Intel Parallel Composer supports three techniques to maximize the

performance of such loops with minimal effort: Auto-vectorization,

use of Intel® optimized valarray containers, and auto-parallelization.

Intel Parallel Composer can automatically detect loops that lend

themselves to auto-vectorization. This includes explicit for loops

with static or dynamic arrays, vector and valarray containers, or user-

defined C++ classes with explicit loops. As a special case, implicit

valarray loops can either be auto-vectorized or directed to invoke

optimized Intel Performance Primitives library primitives. Auto-

vectorization and use of optimized valarray headers optimize the

performance of your application to take full advantage of processors

that support the Streaming SIMD Extensions.

 In a moment, we’ll look at how to enable Intel optimized valarray

headers. But first, let’s look at Figure 10, which shows an example of

an explicit valarray, vector loops, and an implicit valarray loop.

To use optimized valarray headers, you need to specify the use of Intel

Integrated Performance Primitives as a Build Component Selection

and set a command line option. To do this, first load your project into

Visual Studio and bring up the project properties pop-up window.

In the “Additional Options” box, simply add “/Quse-intel-optimized-

headers” and click “OK.”

Intel Integrated Performance Primitives (Intel IPP)
Intel Parallel Composer includes Intel IPP, an extensive library of

multicore-ready, highly optimized software functions for multimedia,

data processing, and communications applications. It offers thousands

of optimized functions covering frequently used fundamental

algorithms in video coding, signal processing, audio coding, image

processing, speech coding, JPEG coding, speech recognition, computer

vision, data compression, image color conversion, cryptography/CAVP

validated, string processing/regular expressions, and vector/matrix

mathematics.

Intel IPP functions are fully thread-safe, and many are internally

threaded, to help you get the most out of today’s multicore

processors.

Figure 9. Intel® Integrated Performance Primitives is included in Intel®
Parallel Composer, a part of Intel® Parallel Studio, and features threaded
and thread-safe library functions over a wide variety of domains.

Figure 10. Source code above shows examples of explicit valarray,
vector loops and an implicit valarray loop.

valarray<float> vf(size), vfr(size);

vector<float> vecf(size), vecfr(size);

//log function, vector, explicit loop

for (int j = 0; j < size-1; j++) {

 vecfr[j]=log(vecf[j]);

}

//log function, valarray, explicit loop

for (int j = 0; j < size-1; j++) {

 vfr[j]=log(vf[j]);

}

//log function, valarray, implicit loop

vfr=log(vf);

Figure 11. Adding the command to use optimized header files to a
command line in Visual C++*

Figure 13. Intel® Parallel Debugger Extension is accessible from the
Debug pull-down menu in Microsoft Visual Studio*.

Figure 12: Telling Visual Studio* to use Intel® IPP

Next, from the Project menu, open the Build Component Selection

pop-up. In the box to the right of “Intel Integrated Performance

Primitives,” select “Common” and click “OK.” Figure 12 presents a

picture of this. With this done, you can rebuild your application and

check it for performance and behavior as you would when you make

any change to your application.

Intel Parallel Debugger Extension
Intel Parallel Composer includes the Intel Parallel Debugger Extension

which, after installation, can be accessed through the Visual Studio

Debug pull-down menu (see Figure 13 below).

Figure 14. Before-and-after view of Intel® Parallel Inspector
(Incorrect memory accesses and leaks fixed)

The Intel Parallel Debugger Extension provides you with additional insight and access to shared data and data dependencies in your parallel

application. This facilitates faster development cycles and early detection of potential data access conflicts that can lead to serious runtime

issues. After installing the Intel Parallel Composer and starting Visual Studio, you can use the Intel Parallel Debugger Extension whenever your

applications are taking advantage of Single Instruction Multiple Data (SIMD) execution and get additional insight into the execution flow and

possible runtime conflicts if your parallelized application uses OpenMP threading.

To take advantage of the advanced features of the Intel Parallel Debugger Extension, such as shared data event detection, function re-entrancy

detection, and OpenMP awareness including serialized execution of parallelized code, compile your code with the Intel Compiler using the

/debug:parallel option for debug info instrumentation.

For more information, check out the “Intel® Parallel Debugger Extension” white paper at http://software.intel.com/en-us/articles/parallel-

debugger-extension/. This paper goes into many more details and benefits that the Debugger Extension can bring to you, and how to best take

advantage of them.

http://software.intel.com/en-us/articles/parallel-debugger-extension/
http://software.intel.com/en-us/articles/parallel-debugger-extension/

Intel Parallel Inspector

Find threading and memory errors

Figure 15. Find memory errors
Quickly finds memory errors including leaks and corruptions in single and
multithreaded applications. This decreases support costs by finding memory
errors before an application ships.

Figure 18. Configure depth of analysis
Simple analysis configuration enables developers to control the depth of
analysis vs. execution time.

Figure 20. Result suppression
Result suppression reduces the information that has to be analyzed by
suppressing results that are not relevant.

Figure 16. Find data races
Accurately pinpoints latent threading errors including deadlocks and data
races, which helps reduce stalls and crashes due to common errors not found
by debuggers and other tools.

Figure 19. Error identification mapped to source code
Click on an identified problem to reveal source code to go directly to the
offending code to quickly make changes.

Figure 17. Intuitive grouping
Intuitively guides the developer by grouping related issues together. When you
fix one problem, Intel Parallel Inspector shows you all of the related locations
where the same fix needs to be applied.

Figure 21. Concurrency Analysis: When are cores idle?

Figure 22. Locks and Waits Analysis: Where are the bad waits?

Intel Parallel Amplifier

Get the best performance out of multicore

Like hotspot analysis, concurrency analysis finds the functions where you are spending the most time. But it also shows you how well you

are utilizing multiple cores. Color indicates the core utilization while the function is running. A green bar means all the cores are working. A red

bar means cores are underutilized. When there is red, add parallelism and get all the cores working for you. This helps you ensure application

performance scales as more cores are added.

Waiting too long on a lock is a common source of performance problems. It’s not bad to wait while all the cores are busy (green). It is bad to wait

when there are unused cores available (red).

Tune core utilization

Green = Ideal Red = Poor

Length of bar is time, color is utilization

while the function is running

Average CPU utilization

Most of the time this app only uses

one core

Call stack information (not shown)

is available

Length of bar is wait time, color

is number of cores utilized during

the wait

Waiting with underutilized cores

hurts performance

Wait count helps identify

interesting waits

Figure 23. Source View: See the results on your source.

Figure 24. Compare Results: Quickly see what changed.

Source view shows you the exact location on your source. Just double-click on the function names in any of the analysis views to see the source.

This gives you a fast way to check progress when tuning and also makes a handy regression analysis.

Click to go to the next-hottest spot

in this function

Click to open the file editor at

this location

When you double-click a function in

any analysis, it opens the source to the

hottest spot

Compare any two previous results

See the times and the difference for

each function

Use any of your previous results

Summary of the change

© 2009, Intel Corporation. All rights reserved. Intel, the Intel logo, and Intel Core are trademarks of Intel Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.
0209/BLA/CMD/PDF 321552-001

Benefits

Designed for today’s applications and tomorrow’s

software innovators. Everything you need to design

and build parallel programs in Visual Studio*.

Fully integrated in Microsoft Visual Studio •	

Supports latest specifications of OpenMP*•	

Prepares legacy serial and new parallel applications to •	

take advantage of multicore and be ready to “forward

scale” for manycore

Preserve investments in source code and development -

environments

Take advantage of the rapidly growing installed base -

of multicore systems

Intel® Parallel Studio tools are available for each stage of •	

the development lifecycle, from design assistance to coding

and debugging to verifying error-free code to tuning

Includes built-in guidance and recommendations, access to •	

threading libraries containing thousands of code options

Simplifies threading and provides capabilities to reduce •	

bugs and system performance issues, helping you to

bring better, feature-rich products to market faster

Designed for architects and developers, leveraging decades •	

of Intel experience providing software development

products to help implement technical applications,

databases, compute intensive applications, and threaded

applications for high performance computing (HPC)

System Requirements
Microsoft Visual Studio •	

For the latest system requirements, go to: •	

www.intel.com/software/products/systemrequirements/

Support
Intel Parallel Studio products include access to community

forums and a knowledge base for all your technical

support needs, including technical notes, application

notes, documentation, and all product updates.

For more information, go to

http://software.intel.com/sites/support/

Beta Versions Available Now

Download and register for the user forums at:
www.intel.com/software/ParallelStudioBeta/

www.intel.com/software/products/systemrequirements/
http://software.intel.com/sites/support/
http://www.intel.com/software/ParallelStudioBeta/

