Intel® Parallel Studio

Product Brief Parallelism for your Development Lifecycle
Intel® Parallel Studio Intel® Parallel Studio brings comprehensive parallelism to C/G-+ Microsoft Visual
Studio* application development. Intel Parallel Studio was created in direct
response to the concerns of software industry leaders and developers. From
the way the products work together to support the development lifecycle to
their unique feature sets, parallelism is now easier and more viable than ever
before. The tools are designed so those new to parallelism can learn as they
go, and experienced parallel programmers can work more efficiently and with
more confidence. Intel Parallel Studio is interoperable with common parallel
Pa ra I IEI programming libraries and API standards, such as Intel® Threading Building
- Studio Blocks and OpenMP* and provides an immediate opportunity to realize the
benefits of multicore platforms.

“The new analysis and profiling tools in Intel® Parallel Studio make the
new Envivio 4Caster* series transcoder’s development faster and
more efficient. In particular, the use of Intel® Parallel Inspector and
Intel® Parallel Amplifier shortens our overall software development time
by increasing the code’s reliability and its performance in a multicore,
multithreaded environment. At the qualification stage, the number of
dysfunctions is reduced due to a safer implementation, and the bug
tracking becomes easier too. Intel Parallel Studio globally speeds up our
software products’ time-to-market”

Eric Rosier
V.P. Engineering
Envivio



Intel® Parallel Studio Tools

Intel® Parallel Amplifier:
Quickly find bottlenecks and tune parallel applications for scalable
multicore performance.

= Find application hotspots and drill down to the source code

= Tune parallel applications for scalable performance using
concurrency analysis

= Use locks & waits analysis to find critical waits that limit parallel
performance

= Compare results to quickly see what changed, or find regressions

Intel® Parallel Composer:
Develop effective applications with a C/CG-+ compiler and advanced
threaded libraries.

= Build with Intel® G-+ Compilers for 32-bit processors, a cross-
compiler to create 64-bit applications on 32-bit systems, and a
native 64-bit compiler

= Code with Intel® Integrated Performance Primitives (Intel® IPP), a
foundation-level set of building blocks for threaded applications
in engineering, financial, digital media, data processing, and
mathematics. Intel IPP can also be used with the Microsoft Visual
CG++* compiler

= Debug with Intel® Parallel Debugger Extension, which integrates with

the Microsoft Visual Studio debugger

= Code with Intel® Threading Building Blocks (Intel® TBB), an award-
winning G-+ template library that abstracts threads to tasks to
create reliable, portable, and scalable parallel applications. Intel TBB
can also be used with the Microsoft Visual G-+ compiler

Intel® Parallel Inspector:

Ensure application reliability with proactive parallel memory and
threading error checking.

= Find threading-related errors such as deadlocks and data races

= Find memory errors such as memory leaks and corruption
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Figure 1. Intel® Parallel Studio workflow

To fully utilize the power of Intel® multicore processors and achieve
maximum application performance on multicore architectures, you
must effectively use threads to partition software workloads. When
adding threads to your code to create an efficient parallel application,
you will typically encounter the following questions:

3. Which parts of your application are most appropriate to parallelize
to obtain the best performance gains and avoid memory conflicts?

b. What programming model and specific threading techniques are
most appropriate for your application?

. How do you detect and fix threading and memory errors, which
are hard to reproduce because the threaded software runsin a
non-deterministic manner, where the execution sequence depends
on the run?

d. How can you actually boost performance of your threaded
application on multicore processors and make the performance
scale with additional cores?

Intel Parallel Studio addresses the issues listed above.

The list below shows the Intel Parallel Studio tools and provides a brief
description of how they address the above issues.
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Figure 2. Hotspot Analysis: Where is my app spending time?

You might start by finding the functions in your application that consume most of the time. This is where to tune or add parallelism to make
your program faster. Intel Parallel Amplifier also shows the stack so you know how the function is being called. For functions with multiple calling
sequences, you can see if one of the call stacks is hotter than the others.
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Figure 3. Hotspot Analysis view identifies functions with the highest CPU times.

The workflow diagram below depicts a typical usage model across all of the tools in Intel Parallel Studio. I you are just starting to add parallelism
to your application, finding hotpsots would be a great first step. If you have already added some parallelism or if your application has been
optimized, you could start by verifying error free code or by tuning.




Intel G++ Compiler:
Microsoft Visual Studio integration, Microsoft Visual C++ compatibility, and support for numerous parallel

programming APIs (Application Programming Interfaces)
All features in Intel Parallel Studio are seamlessly integrated into Microsoft Visual Studio 2005* and 2008.
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Figure 4. Intel® Parallel Composer integrates into Visual Studio*. The solution on display shows how to switch to the Intel® C++ compiler. You can easily
switch to Visual C++* from the Project menu or by right-clicking over the solution or project name.

Intel Threading Building Blocks: C++ library
for scalable parallelism

Intel Threading Building Blocks (Intel TBB) offers a rich methodology provides several functions and templates like parallel_for, parallel_
to express parallelism in a G++ program. Included in Intel Parallel Studio, ~ While, parallel_reduce, pipeline, parallel_sort, and parallel_scan, along
Intel TBB can be used with the Intel G-+ Compiler or with Microsoft with some concurrent containers to help improve productivity when
Visual G+ Intel TBBis a library that takes advantage of higher-level, developing parallelism in your code.

task-based parallelism that abstracts platform details and threading

specifics for performance and scalability. It uses a runtime-based 4 )
programming model and provides parallel algorithms based on a void SerialApplyFoo( float a[], size_t n ) {
template library similar to the standard template library (STL). for( size t i=0; il=n; ++i )

Foo(a[i]);
The Intel TBB task scheduler does the load balancing for you. With }
thread-based programming, you are often stuck dealing with load- L )

balancing yourself, which can be tricky to get right. After breaking
your program into many small tasks, the Intel TBB scheduler assigns
tasks to threads in a way that spreads out the work evenly for the
best scalability. The methodology already used in Cr+ is extended
by Intel TBB to realize simple parallelization concepts. Intel TBB

Figure 5A. Serial example
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class ApplyFoo { P
float *const my_ a;
public:
ApplyFoo( float *a ) : my_a(a) {}
void operator()( const blocked range<size t>& range ) const {
float *a = my_aj;
for( size_t i=range.begin(); i!=range.end(); ++i )
Foo(a[i]);
}
i
void ParallelApplyFoo( float a[], size_t n ) { e—
parallel for( blocked range<size t>( 0, n ),
ApplyFoo(a),
auto_partitioner()); . —| Partitioning hint
S J

Figure 5B. Parallel version with Intel® TBB

Support for lambda functions

The Intel Compiler is the first G-+ compiler to implement lambda
functions in support of the working draft of the next G-+ standard
CG++0x. A lambda construct is almost the same as a function object in
G+ or a function pointer in C. Together with closures, they represent
a powerful concept because they combine code with a scope. For
example, it you have a G++ application that uses iterators for loops,
Intel TBB, with lambda support, will help implement templated loop
patterns.

The source code in Figure & below is an example of a function object
created by a lambda expression. Tighter G-+ and Intel TBB integration
allows the simplification of the functor operator() concept by using
lambda functions and closures to pass code as parameters.

a A
void ParallelApplyFoo(float a[], size t n ) {

parallel for( blocked range<size t>( 0, n ),
[=](const blocked range<size t>& range) {

for( int i= range.begin(); i!=range.end();

++i )
Foo(a[i]);
b
auto_partitioner() );
}
S J

Figure 6: Source code example of a lambda function

OpenMP 3.0*

OpenMP is an industry standard for portable multithreaded application
development. It is effective at fine-grain (loop-level) and coarse-

grain (function-level) threading. OpenMP 3.0 supports both data and
now task parallelism using a directives approach, which provides an
easy and powerful way to convert serial applications into parallel
applications, enabling potentially big performance gains from parallel
execution on multicore and symmetric multiprocessor systems.

When an application that has been written and built using OpenMP

iS Tun on a system with just one processor, the results are the same
as unmodified source code. Stated differently, the results you get are
the same as you would get from unmodified, serial-execution code.
This makes it easier for you to make incremental code changes, while
maintaining serial consistency. Because only directives are inserted
into the code, it is possible to make incremental code changes and
still maintain @ common code-base for your software as it runs on
systems that still have only one processor.

OpenMP is a single source code solution that supports multiple
platforms and operating systems. There is also no need to "hard-
code” the number of cores into your application because the OpenMP
runtime chooses the right number for you.



OpenMP 3.0 task queuing

Sometimes programs with irregular patterns of dynamic data or
complicated control structures, like recursion, are hard to parallelize
efficiently. The work queuing model in OpenMP 3.0 allows you

to exploitirregular parallelism, beyond that possible with OpenMP
20o0r25.

The task pragma specifies the environment within which the enclosed
units of work (tasks) are to be executed. When a task pragma is
encountered, the code inside the task block is conceptually queued
into the queue associated with the task. To preserve sequential
semantics, there is an implicit barrier at the completion of the task.
The developer is responsible for ensuring that no dependencies exist
or that dependencies are appropriately synchronized, either between
the task blocks, or between code in a task block and code in the task
block outside of the task blocks. An example is presented below in
Figure 7.

#pragma omp parallel

#pragma omp single

{

for(int i=0; i<size; it+) {

// try all positions in first row
// create separate array for each recursion
// started here

#pragma omp task
setQueen(new int[size], 0, 1i);
}

}

. J

Figure 7. Example of OpenMP 3.0* task queuing

In the example in Figure 7 above, we need only one task queue.
Therefore we need to set up the queue by invaking only one thread
(omp single). The setQueen calls are independent of each other and
therefore they fit nicely into the task concept. You might want to also
read about the Intel Parallel Debugger Extension, which makes it easy
to inspect the state of tasks, teams, locks, barriers, or taskwaits in
your OpenMP program in dedicated windows.

/ N\

Simple concurrency functions
Intel Parallel Composer offers four new keywords to help make parallel

programming with OpenMP easier. __taskcomplete, __task, __par, and

Jp—

__critical. In order for your application to benefit from the parallelism

made possible by these keywords, you specify the /Qopenmp compiler
option and then recompile, which links in the appropriate runtime
support libraries, which manage the actual degree of parallelism.
These new keywords use the OpenMP 3.0 runtime library to deliver
the parallelism, but free you from actually expressing it with OpenMP
pragma and directive syntax. This keeps your code more naturally
writtenin Cor G-+,

The keywords mentioned above are used as statement prefixes.

For example, we can parallelize the function, solve(), using __par.
Assuming that there is no overlap among the arguments, the solve()
function is modified with the addition of the __par keyword. With
no change to the way the function is called, the computation is
parallelized. An example is presented in Figure 8.

1 A
void solve() {

__par for(int i=0; i<size; i++) {

// try all positions in first row

// create separate array for each
recursion

// started here

setQueen(new int[size], 0, 1i);

}

}
N J

Figure 8. Example of __par, one of four simple concurrency functions,
new in the Intel® C++ Compiler in Intel® Parallel Studio




Intel Integrated Performance Primitives (Intel IPP)

Intel Parallel Composer includes Intel IPP, an extensive library of
multicore-ready, highly optimized software functions for multimedia,
data processing, and communications applications. It offers thousands
of optimized functions covering frequently used fundamental
algorithms in video coding, signal processing, audio coding, image
processing, speech coding, JPEG coding, speech recognition, computer
vision, data compression, image color conversion, cryptography/CAVP
validated, string processing/regular expressions, and vector/matrix
mathematics.

Intel IPP functions are fully thread-safe, and many are internally
threaded, to help you get the most out of today's multicore
Processors.
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Optimize embarrassingly parallel loops

Algorithms that display data parallelism with iteration independence
lend themselves to loops that exhibit “embarrassingly parallel” code.
Intel Parallel Composer supports three techniques to maximize the
performance of such loops with minimal effort: Auto-vectorization,
use of Intel® optimized valarray containers, and auto-parallelization.
Intel Parallel Composer can automatically detect loops that lend
themselves to auto-vectorization. This includes explicit for loops
with static or dynamic arrays, vector and valarray containers, or user-
defined G++ classes with explicit loops. As a special case, implicit
valarray loops can either be auto-vectorized or directed to invoke
optimized Intel Performance Primitives library primitives. Auto-
vectorization and use of optimized valarray headers optimize the
performance of your application to take full advantage of processors
that support the Streaming SIMD Extensions.

In a moment, we'll look at how to enable Intel optimized valarray
headers. But first, let's look at Figure 10, which shows an example of
an explicit valarray, vector loops, and an implicit valarray loop.

4 N
valarray<float> vf(size), vfr(size);

vector<float> vecf(size), vecfr(size);

//log function, vector, explicit loop
for (int j = 0; j < size-1; j++) {
vecfr[j]=log(vecf[]j]);

}

//log function, valarray, explicit loop

for (int j = 0; j < size-1; j++) {
vir[jl=log(vE[]]);

}

//log function, valarray, implicit loop

vir=log(vf);

Figure 9. Intel® Integrated Performance Primitives is included in Intel®
Parallel Composer, a part of Intel® Parallel Studio, and features threaded
and thread-safe library functions over a wide variety of domains.

Figure 10. Source code above shows examples of explicit valarray,
vector loops and an implicit valarray loop.

To use optimized valarray headers, you need to specify the use of Intel
Integrated Performance Primitives as a Build Component Selection
and set a command line option. To do this, first load your project into
Visual Studio and bring up the project properties pop-up window.

In the "Additional Options” box, simply add “/Quse-intel-optimized-
headers" and click "OK
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Figure 11. Adding the command to use optimized header files to a
command line in Visual C++*

Next, from the Project menu, open the Build Component Selection
pop-up. In the box to the right of “Intel Integrated Performance
Primitives,” select "“Common" and click “OK." Figure 12 presents a
picture of this. With this done, you can rebuild your application and
check it for performance and behavior as you would when you make
any change to your application.

ng-openmp - Build Component Selection [ 2]
Project Configuration: Project Platform:
|Dehug j | J
Version to use with this configuration: Default Suite version:

| |

Intel Performance Libraries to use with this configuration

Intel Integrated Performance Primitives:
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oK | Cancel Apply

Figure 12: Telling Visual Studio* to use Intel® IPP

Intel Parallel Debugger Extension

Intel Parallel Composer includes the Intel Parallel Debugger Extension
which, after installation, can be accessed through the Visual Studio
Debug pull-down menu (see Figure 13 below).
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Figure 13. Intel® Parallel Debugger Extension is accessible from the
Debug pull-down menu in Microsoft Visual Studio*.
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Figure 14. Before-and-after view of Intel® Parallel Inspector
(Incorrect memory accesses and leaks fixed)

The Intel Parallel Debugger Extension provides you with additional insight and access to shared data and data dependencies in your parallel
application. This facilitates faster development cycles and early detection of potential data access conflicts that can lead to serious runtime
issues. After installing the Intel Parallel Composer and starting Visual Studio, you can use the Intel Parallel Debugger Extension whenever your
applications are taking advantage of Single Instruction Multiple Data (SIMD) execution and get additional insight into the execution flow and
possible runtime conflicts it your parallelized application uses OpenMP threading.

To take advantage of the advanced features of the Intel Parallel Debugger Extension, such as shared data event detection, function re-entrancy
detection, and OpenMP awareness including serialized execution of parallelized code, compile your code with the Intel Compiler using the
/debug:parallel option for debug info instrumentation.

For more information, check out the “Intel® Parallel Debugger Extension” white paper at http:/software.intel.com/en-us/articles/parallel-
debugger-extension/. This paper goes into many more details and benefits that the Debugger Extension can bring to you, and how to best take
advantage of them.
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Intel Parallel Inspector

Find threading and memory errors
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Figure 15. Find memory errors

Quickly finds memory errors including leaks and corruptions in single and
multithreaded applications. This decreases support costs by finding memory
errors before an application ships.

[0 S| ¢ (@ o]
Problem Sets
ID & % Problem | Sources
Data race

Modules

Banner.exe

Object Size

insp_banner.cpp

P2 @ Datarace insp_banner.cpp  Banner.exe
Observationsin Problem Set: Datarace
D Desc... & Source Function Module

#X4 Write insp_banner.cpp:101  StuffSpace  Banner.exe
#X5 Write insp_banner.cpp; 101 StuffSpace  Banner.exe
#HX6 Write insp_banner.cpp:85  Stuffletter  Banner.exe
HXT  Write insp_banner.cpp:85  Stuffletter Banner.exe

Figure 16. Find data races

Accurately pinpoints latent threading errors including deadlocks and data
races, which helps reduce stalls and crashes due to common errors not found
by debuggers and other tools.
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Figure 17. Intuitive grouping

Intuitively guides the developer by grouping related issues together. When you
fix one problem, Intel Parallel Inspector shows you all of the related locations
where the same fix needs to be applied.

Configure Analysis

- Does my target leak memory? {default)
Does my target have memory access problems?
- Where are the memory access problems?

- Where are all the memory problems Inspector can find?

Figure 18. Configure depth of analysis

Simple analysis configuration enables developers to control the depth of
analysis vs. execution time.
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X5 Read P main.cpp:50  doitx update_system.exe

Figure 19. Error identification mapped to source code

Click on an identified problem to reveal source code to go directly to the
offending code to quickly make changes.

Private suppressions: | Delete problems

Mark problems

Do not use suppressions

Figure 20. Result suppression

Result suppression reduces the information that has to be analyzed by
suppressing results that are not relevant.
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Figure 21. Concurrency Analysis: When are cores idle?

Like hotspot analysis, concurrency analysis finds the functions where you are spending the most time. But it also shows you how well you
are utilizing multiple cores. Color indicates the core utilization while the function is running. A green bar means all the cares are working. A red
bar means cores are underutilized. When there is red, add parallelism and get all the cores working for you. This helps you ensure application
performance scales as more cores are added.
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Figure 22. Locks and Waits Analysis: Where are the bad waits?

Waiting too long on a lock is @ common source of performance problems. It's not bad to wait while all the cores are busy (green). It is bad to wait
when there are unused cores available (red).
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Figure 23. Source View: See the results on your source.

Source view shows you the exact location on your source. Just double-click on the function names in any of the analysis views to see the source.
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Figure 24. Compare Results: Quickly see what changed.

This gives you a fast way to check progress when tuning and also makes a handy regression analysis.
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