

Getting Started with the Intel®
Parallel Amplifier

The Intel® Parallel Amplifier provides information on the performance of your code.
The Intel Parallel Amplifier shows you the performance issues, enabling you to focus
your tuning effort and get the best performance boost in the least amount of time.

The goal of this guide is to introduce you to the basic features of the Amplifier.

After completing this guide, you will be able to use the Amplifier to analyze your code
and understand where to focus your tuning efforts to gain the most performance
improvement.

This document will step you through the iterative process of tuning a sample
application and step you through the stages of performance tuning:

• Locate a performance issue

• Revise the code to remove the issue

• Compare the performance of the new code with the initial code

For a more graphical getting started experience, try the Show Me video
demonstrations offered at http://software.intel.com/en-us/articles/intel-parallel-
studio.

Contents

1 Build the Application..3

2 Where is Your Program Spending Time? ...3

3 Where is Your Concurrency Poor? ..6

4 Where is Your Program Waiting? ...9

5 What Optimization Did You Get?..11

6 Next Steps...13

http://software.intel.com/en-us/articles/intel-parallel-studio
http://software.intel.com/en-us/articles/intel-parallel-studio

Getting Started with the Intel® Parallel Amplifier

Disclaimer and Legal Information
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS
OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL
PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR
INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A
SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers
must not rely on the absence or characteristics of any features or instructions marked "reserved" or
"undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to them. The information here is subject to
change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing
your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel
literature, may be obtained by calling 1-800-548-4725, or by visiting Intel's Web Site.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features
within each processor family, not across different processor families. See
http://www.intel.com/products/processor_number for details.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino logo, Core Inside, FlashFile, i960, InstantIP,
Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Core, Intel Inside, Intel
Inside logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel NetMerge, Intel NetStructure,
Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel XScale, IPLink, Itanium,
Itanium Inside, MCS, MMX, Oplus, OverDrive, PDCharm, Pentium, Pentium Inside, skoool, Sound Mark,
The Journey Inside, VTune, Xeon, and Xeon Inside are trademarks of Intel Corporation in the U.S. and
other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2008, Intel Corporation.

Microsoft product screen shot(s) reprinted with permission from Microsoft Corporation.

2 Document Number: 320487-001US

Build the Application

1 Build the Application

Before you start, you need to build the sample application in the Microsoft* Visual
Studio* environment. The matrix application, used as a sample application in this
guide, calculates matrix transformations. To facilitate the analysis and quickly
estimate your optimization efforts, the application includes a timer and prints the
amount of time it takes to calculate matrix transformations.

To build the application:

1. From the Visual Studio, go to File > Open > Project/Solution and navigate to
<install_dir>\samples\matrix\matrix.vcproj.
The project is added to Visual Studio and shows up in the Solution Explorer.

2. Go to Build > Build Solution.
The matrix.exe application is built.

2 Where is Your Program Spending
Time?

After building the application, you can go through the process of analyzing the
performance of the code provided in the <install-dir>/samples/matrix directory.

The Intel® Parallel Amplifier provides several types of analysis to collect different
types of performance data. In this step, you will run the Hotspot analysis to collect
data, view the results, and zoom into the specific problem areas of the source code.
The Hotspot analysis helps you understand where your application spends time
running and identify the most time-consuming functions.

NOTE: To make sure the performance of the application is repeatable, go through the entire
tuning process on one particular system with a minimal amount of other software
executing.

2.1 Create a Benchmark
Create a benchmark of the original performance:

Getting Started Guide 3

Getting Started with the Intel® Parallel Amplifier

1. Start the matrix application outside of Visual Studio to get the most accurate
numbers.

NOTE: Before running the application to analyze, you are recommended to minimize the
number of other software running on your computer to get more accurate results.

A benchmark
must be
measurable and
reproducible so
that it can be
used as a basis
for comparison of
future revisions.

2. After the application run, you can see the execution time in the output:

The execution time is your benchmark for this phase of tuning the application.

NOTE: You can run the application several times and use the average number. This helps to
minimize transient system activity skewing.

2.2 Find a Hotspot
Run the Hotspot analysis to identify the hotspots - functions/code sections that took
much time to execute.

1. From the Amplifier toolbar, select Hotspots – Where is my program spending
time running?

2. Click the Profile button.
The Amplifier launches the matrix application that calculates matrix
transformations and exits.

When data collection completes, the Hotspots: Bottom-up window opens:

4 Document Number: 320487-001US

Where is Your Program Spending Time?

Function – Call Stack is the default grouping
level for hotspot data. Click the arrow button to
change the grouping level.

Click the plus sign in front of the function name to
view call stacks for the selected function. Callers
of the selected function are displayed, then callers
of the first caller(s), and so on.

CPU Time is the Data of Interest column for the
hotspot analysis results. CPU time is calculated
based on running time only. For multiple threads,
CPU time is summed up.

Full stack information for the function selected in
the grid. Yellow bar shows the contribution of the
selected stack to the hotspot function CPU time.

Summary data on the analysis run. CPU Time is
the sum of hotspot functions’ CPU time. Elapsed
time is the application execution time from start to
termination.

2.3 Analyze the Results
The first function listed in the Hotspots: Bottom-up window and the one that takes
the most time, is algorithm_3. Focus on this function to see if you can find a way to

improve its performance.

Double-click the algorithm_3 function to view its source code. Notice that line #222

consumed the most CPU time.

Getting Started Guide 5

Getting Started with the Intel® Parallel Amplifier

This is a good opportunity to get to know some features of the Source pane. The table
below explains some of the features available in the Source pane when viewing the
Hotspot analysis data.

Non-editable source code of the application. It opens if the function symbol information is
available. The code line that took the most CPU time to execute is highlighted.

Processor time is attributed to a particular code line. If the hotspot is a system function, its
time, by default, is attributed to the user function that called this system function.

Hotspot navigation buttons to switch between code lines that took a long time to execute.

Source file editor button to open and edit your code.

To optimize the sample code, you can consider adding threads to the application so
that it could perform well on multicore processors. You have to determine the best
place in the application to break up the code into multiple threads.

3 Where is Your Concurrency Poor?

In this step, you will run the Concurrency analysis to understand whether your
application effectively utilizes all available cores and identify the most serial code to
parallelize.

6 Document Number: 320487-001US

Where is Your Concurrency Poor?

3.1 Check for Concurrency
To run the Concurrency analysis, from the Amplifier toolbar select Concurrency –
Where is my concurrency poor? and click Profile. When the matrix application
exits after calculations, the Amplifier finalizes the results and opens the Concurrency
window:

Both the Concurrency window and Summary tab show that the entire matrix
application is serial. The red bars in the CPU Time by Utilization column indicate that
processor cores were underutilized. The Summary tab shows only CPU time with 0 or
1 running thread.

Notice that the method with the most serial time is algorithm_3 as you saw in the

Hotspots: Bottom-up window. Potentially this module is the best opportunity to
parallelize. Double-click algorithm_3 to see the source code and identify the lines

with the most serial time.

3.2 Rebuild the Application
In this step, you will rebuild the matrix application for parallelism.

1. From Visual Studio, open matrix.cpp.

2. At line 22, uncomment the macro that defines USE_MULTIPLE_THREADS as TRUE.

3. At line 23, comment out the macro that defines USE_MULTIPLE_THREADS as FALSE.

Getting Started Guide 7

Getting Started with the Intel® Parallel Amplifier

4. In the algorithm_3 procedure, at lines 216 and 218, uncomment the Enter and
LeaveCriticalSection calls to keep the initialization safe from multiple thread

access.

5. Rebuild the application with a debug build.
Make sure you see 0 errors and 0 warnings in the Visual Studio output pane.

3.3 Compare Performance with the Benchmark
Run the newly built application again from the command window.

Notice that the execution time decreased from 21.31 to 14.01 seconds.

3.4 Re-check for Concurrency
In this step, you will run the concurrency data collection again on the modified matrix
application.

8 Document Number: 320487-001US

Where is Your Program Waiting?

Notice that algorithm_3 now does not have under utilized time anymore. But there is

still some serial time (Ok type of CPU time utilization indicated with orange bar) that
you can try to optimize.

NOTE: The modified version of the application uses cross-thread synchronization primitives.
When running the Concurrency or Locks and Waits analysis, the Amplifier analyzes
these primitives, which makes the result finalization stage longer and increases the
application elapsed time.

4 Where is Your Program Waiting?

In this step, you will run the Locks and Waits analysis to understand the cause for the
serial Ok CPU time left in algorithm_3.

4.1 Analyze Locks and Waits
To run the Locks and Waits analysis, from the Amplifier toolbar select Locks and
Waits – Where is my application waiting? and click Profile.

The Locks and Waits: Bottom-up window provides the following data:

Notice that the synchronization object with the most wait time is a thread. Double-
click that thread to go to the source code of the wait.

Getting Started Guide 9

Getting Started with the Intel® Parallel Amplifier

You see that it is just the main thread waiting for the matrix transformation thread to
complete. This is not a problem because the matrix transformation thread is doing its
calculations while the main thread is waiting for it to complete.

Consider the second item in the Locks and Waits: Bottom-up window that is more
interesting. It is a Critical Section that shows serial only the time while the critical
section is causing a wait. Double-click the Critical Section to see the source code for
the wait.

It is the critical section you created when you threaded algorithm_3. This critical

section is causing some significant wait time. If you examine the code more
thoroughly, you can see the critical section is not required. The index i used in the
data.cc[i] = 0.0; statement is already protected from multithread access
because of the for loop above in which i is set. The for loop induction variable i is
set differently for each thread because of the for loop iterator i+=NumThreads.

Thus, you can delete the Critical Section reference and rerun the application.

10 Document Number: 320487-001US

What Optimization Did You Get?

4.2 Rebuild the Final Application
Go back to Visual Studio software and comment out the EnterCriticalSection
call (line 216) and the LeaveCriticalSection call (line 218) and rebuild the app.

4.3 Run the Final Benchmark
Run the newly built matrix.exe again from the command window.

The execution time of the application decreased from 14.01 to 13.83 seconds.

5 What Optimization Did You Get?

In this step, you will compare concurrency analysis results. You will be able to view
performance changes function by function. By comparing the results before and after
optimization you made, you can estimate how your changes have changed the
performance and how much.

To compare the concurrency results:

1. Run the Concurrency analysis on the code modified after the Locks and Waits
analysis.

2. Click the Compare Results button on the Profile toolbar.
The Compare Results dialog box opens.

Getting Started Guide 11

Getting Started with the Intel® Parallel Amplifier

3. Specify the concurrency results you want to compare:

The Concurrency: Bottom-up window opens:

12 Document Number: 320487-001US

Next Steps

CPU time for the single-threaded matrix.exe application with Poor processor
utilization.

CPU time for the optimized multiple-threaded matrix.exe application with Ok
processor utilization.

CPU time column providing difference between two results in the following format:
<Difference CPU Time> = <Result 1 CPU Time> – <Result 2 CPU Time>. For
example, for algorithm_3, CPU time optimization for Result 2 is 16 seconds.

Comparison summary provides data for two results: 1) elapsed time is the execution
time of the application; 2) CPU time is the sum of CPU time for all threads; 3) logical
CPUs utilized is the average utilization of all cores during application run; 4) logical
CPU count for your machine.

Concurrency graph displaying the difference in running time between two results
<Result 1 running time> – <Result 2 running time>.

The comparison summary shows that with the multiple threaded version of the
matrix.exe application (Result 2) you achieved the Ideal processor utilization (86-

115% of the target concurrency) when running two threads and got 16-second
optimization for the algorithm_3 hotspot function.

6 Next Steps
This guide focuses on basic features of the Intel® Parallel Amplifier. To explore more
features and get most of the Intel Parallel Amplifier, try the following resources:

Resource Notes

Intel® Parallel Amplifier
User’s Guide

Online help integrated into Microsoft* Visual Studio*.
User’s Guide provides full information on the product.

To access the user’s guide, from the Visual Studio
Help menu select Intel Parallel Amplifier > Intel
Parallel Amplifier Help. To view the context-
sensitive help for the active window, press F1.

Sample Code Guide Guide to the sample code located in the <install-
dir>\documentation\<locale> folder. This guide
explores most typical usage scenarios of interpreting
and handling the performance bottlenecks.

To access the Sample Code Guide, from the Visual
Studio Help menu select Intel Parallel Amplifier >
Sample Code Guide.

Documentation Index Use this html page to locate other Intel® Parallel
Amplifier resources. To open this html page, from the

Getting Started Guide 13

Getting Started with the Intel® Parallel Amplifier

14 Document Number: 320487-001US

Windows* Start menu, choose Intel Parallel Studio
> Intel Parallel Amplifier > Intel Parallel
Amplifier Documentation.

Intel® Parallel Studio
resources

Intel® Parallel Studio provides the most
comprehensive set of tools for parallelism:

• Intel® Parallel Advisor helps developers
understand where to add parallelism to existing
source code, including identifying hotspots and
common data conflicts

• Intel® Parallel Composer speeds software
development incorporating parallelism with a
C/C++ compiler and comprehensive threaded
libraries

• Intel® Parallel Inspector helps developers
detect and perform root-cause analysis on
threading and memory errors in multithreaded
applications

To open documentation that points to more resources
for each installed Intel Parallel Studio product, from
the Windows* Start menu, choose Intel Parallel
Studio > product name > product name
Documentation.

	Contents
	1 Build the Application
	2 Where is Your Program Spending Time?
	2.1 Create a Benchmark
	2.2 Find a Hotspot
	2.3 Analyze the Results

	3 Where is Your Concurrency Poor?
	3.1 Check for Concurrency
	3.2 Rebuild the Application
	3.3 Compare Performance with the Benchmark
	3.4 Re-check for Concurrency

	4 Where is Your Program Waiting?
	4.1 Analyze Locks and Waits
	4.2 Rebuild the Final Application
	4.3 Run the Final Benchmark

	5 What Optimization Did You Get?
	6 Next Steps

