

Getting Started with the Intel®
Parallel Studio

The Intel® Parallel Studio offers a complete set of tools for every phase in the
development cycle of parallel applications on multi-core systems: analysis and design,
coding and debugging, verification and tuning.

All Parallel Studio functionality is integrated into the Microsoft Visual Studio*
development environment:

Intel® Parallel Advisor
Lite

A utility to help identify candidate functions for
parallelizing and advise on protecting or sharing
data.

Intel® Parallel Composer Intel® C++ compiler, Intel® Threading Building
Blocks, Intel® Integrated Performance Primitives,
and Intel® Parallel Debugger Extension.

Intel® Parallel Inspector A multithreading tool to detect challenging
threading and memory errors.

Intel® Parallel Amplifier A performance analysis and tuning tool for

parallel applications.

This guide will use a sample application to show you how to get started with all these
components.

Contents
1 About the Sample Application ...2

2 Creating Parallel Programs Using the Intel® Parallel Studio.....................................3
Step 1. Find Where to Start Parallelizing...3
Step 2. Introduce Threads, Compile and Debug...4
Step 3. Find Threading and Memory Errors ...5
Step 4. Tune ..6

3 Select a Threading Technique ...7

4 User and Reference Documentation ...7

Legal Information ...9

Getting Started with the Intel® Parallel Studio

1 About the Sample Application
This guide references the NQueens-ParallelStudio sample application found at:
C:\Program Files\Intel\Parallel Studio\Samples. The NQueens solution
includes a serial project, a parallelized project with a bug, and a correctly parallelized
project.

To follow along with the steps in this guide, unzip NQueens-ParallelStudio.zip
to a local directory and load the NQueens-ParallelStudio.sln solution file into
Microsoft Visual Studio*.

NOTE: For a graphical tour of the Intel® Parallel Studio, see the Show Me video offered at
http://software.intel.com/en-us/articles/intel-parallel-studio. This video uses the
NQueens sample application to walk you through each step in the workflow discussed
in this document. After successful installation of the Intel® Parallel Studio, the video
will also be available in the documentation\en_US subdirectory of the installation

directory.

 Document Number: 321166-001US 2

http://software.intel.com/en-us/articles/intel-parallel-studio

Creating Parallel Programs Using the Intel® Parallel Studio

2 Creating Parallel Programs Using the
Intel® Parallel Studio
Performance experts at Intel, experienced in parallelizing a variety of applications,
have recognized four basic steps to create parallel programs: 1) Finding where to start
parallelizing 2) Introducing parallelism into the application 3) Debugging the parallel
program for correctness 4) Tuning the program to ensure good thread and CPU-core
utilization. The tools and technology in Intel® Parallel Studio are designed to ease the
time and complexity of these four steps.

Figure 1. The Intel® Parallel Studio Workflow

Step 1. Find Where to Start Parallelizing
The first step to parallelizing an application is to identify candidate loops or sections in
your application that may benefit from parallelization. These candidates are typically

Getting Started Guide 3

Getting Started with the Intel® Parallel Studio

the obvious time-consuming algorithms in your application. Finding the hotspot, or
most time-consuming function, is only a part of the process. You also need to identify
the data objects that need to be made private or shared.

If you already know of potential candidates in your application that would benefit from
parallelization or you already made an initial attempt at introducing parallelism, go
directly to step 2 in this workflow.

Intel® Parallel Advisor Lite is a prototype utility we are testing to help you find and
recommend the hotspots and objects to parallelize. After installing Parallel Studio, you
can download Advisor Lite from http://whatif.intel.com. Refer to the installed
documentation for Advisor Lite for more information about using it for finding
parallelism opportunities.

Run the application serially first:

1. Extract the NQueens-ParallelStudio.zip to a directory of your
choosing. If you installed to the default path, they are located at
C:\Program Files\Intel\Parallel Studio\Samples.

2. Load the NQueens-ParallelStudio.sln into Microsoft Visual Studio and
build it.

3. Set the Step1-Serial-Hotspot project as the Start-Up project by
highlighting it and selecting Project > Set as StartUp Project.

4. Run the serial application to see its performance with Debug > Start
Without Debugging. You will see a console window displayed with the
NQueens usage information, and after a few seconds, the number of solutions
found, and the time taken in milliseconds.

Result: As you read the source code, you will see that the setQueen()function is
the hotspot, but its parent function, solve(), is where you need to parallelize
because it contains a simple loop that drives the NQueen solution search.

Step 2. Introduce Threads, Compile and Debug
Use Intel® Parallel Composer to introduce a threading method to your application, as
well as compile and debug the application. The Intel® C++ compiler, comprehensive
threaded libraries, and a parallel debugger extension help you quickly create and
debug threaded C/C++ applications in the Microsoft Visual Studio* development
environment.

Composer provides several thread implementation methods: OpenMP* technology,
Intel® Threading Building Blocks, new C++ parallel extensions, and a parallel multi-
media library Intel® Integrated Performance Primitives. See “Select a Threading
Technique” for more information on how to choose the best method for your
application.

Try it now:

 Document Number: 321166-001US 4

http://whatif.intel.com/

Creating Parallel Programs Using the Intel® Parallel Studio

1. In the NQueens-ParallelStudio.sln solution, select Step2-3-Parallel-
Check as the Start-Up Project.

2. Select the Intel® C++ Compiler to build the project: Project > Intel
Parallel Composer > Use Intel C++.

3. Look at the nq-parallelstart.cpp file to see the OpenMP*
implementation of the main driver function, solve().

4. Build the project in Debug configuration.

5. Run the application using Debug > Start Without Debugging to see
whether it runs correctly now that it is threaded.

Result: You should see an error message of an incorrect number of solutions
found. If you don’t see such a message, increase the board-size (the default is
12) in the Command Arguments field in Project > Properties > Debugging.

As with many threading errors, this application seems to work correctly on some
runs with some input data, but still has a bug. Find that bug!

Refer to the Intel® Parallel Composer Getting Started Guide for detailed
explanations of the threading techniques and libraries, and parallel debugging.

Step 3. Find Threading and Memory Errors
Use Intel® Parallel Inspector to find and get rid of common threading and memory
errors. Inspector is a multithreading error checking tool for Microsoft Visual Studio
C/C++ developers. The tool detects challenging threading and memory errors and
provides guidance to help ensure application reliability.

Try it now:

1. In the NQueens-ParallelStudio.sln solution, use the Step2-3-Parallel-
Check project again.

2. From the Visual Studio* main menu, choose Tools > Intel Parallel
Inspector > Inspect Threading Errors. A pop-up window appears.

3. In the pop-up window, notice there is a selector-bar to the right of the dial.
Move that down to the 2nd selection — “Does my target have deadlocks or
data races?” and then click Run Analysis. Since the Inspector is analyzing
the application execution, it runs a lot slower than if no analysis were
underway. You will see the NQueens console window displayed during this.

4. When Inspector finishes the analysis, a pop-up will appear with two options.
Choose Interpret Results.

5. Double-click on the Data race problem identified to see the source and details
about it.

Result: The nrOfSolutions++; statement in the setQueens() function
should be in a critical section. This is the bug.

Getting Started Guide 5

http://software.intel.com/en-us/articles/intel-parallel-studio/

Getting Started with the Intel® Parallel Studio

NOTE: Try the Inspector’s Memory Checking feature to see if there are other memory leaks
that could impact correctness and performance. To try this, in #2 above, use Tools >
Intel Parallel Inspector > Inspect Memory Errors instead.

Refer to the Intel® Parallel Inspector Getting Started Guide for detailed
explanations of the analysis and results that Inspector provides.

Step 4. Tune
Use Intel® Parallel Amplifier to tune your threaded application for multi-core
performance scalability by locating unexpected serialization and other performance
bottlenecks. Amplifier will help you find where your program is spending time, where
your concurrency is poor, and where your program is waiting.

Try it now:

1. In the NQueens-ParallelStudio.sln solution, select the Step4-Parallel-
Tune project as the Start-Up Project and build it in Release configuration.
The nqueens-parallelfinal.cpp file contains the corrected code in the
setQueens() function.

2. From the Visual Studio* menu, choose Tools > Intel Parallel Amplifier >
Concurrency – Where is my concurrency poor? The NQueens console
window appears once again.

The Inspector starts “Collecting Data.” When the data-collection is done, in
Visual Studio, a message appears telling you “Analysis successfully
completed” and the progress-bar indicates that it is “finalizing results”.

3. Interpret the resulting concurrency summary chart in the lower right of the
Visual Studio window to see whether all cores were fully utilized. Mouse over
the small boxes in the line-diagram for some insights.

Result: This Step4-Parallel-Tune project is a correctly threaded solution to
the NQueens problem and should show good thread/multi-core utilization.
Running this application by itself (Debug > Start Without Debugging) should
show a significant time decrease in the NQueens console window versus what you
saw in the Step1-Serial-Hotspot project.

If all available cores were not efficiently utilized, choose Tools > Intel Parallel
Amplifier > Locks and Waits – Where is my program waiting? to see
whether there are synchronization objects, I/O, or other places causing this
underutilization. This analysis and finalization of results could take a bit longer
than the analysis you did above in step 2.

Refer to the Intel® Parallel Amplifier Getting Started Guide for explanations
and examples on how best to use and interpret Amplifiers graphs and data.

 Document Number: 321166-001US 6

http://software.intel.com/en-us/articles/intel-parallel-studio/
http://software.intel.com/en-us/articles/intel-parallel-studio/

Select a Threading Technique

3 Select a Threading Technique
Intel® Parallel Studio offers multiple threading techniques to parallelize your
application. To choose the technique that best suits the code to be parallelized, review
the list below, weigh the benefits of each technique against the limitations, and take
into account compatibility of the techniques with one another. You can find this
information at http://software.intel.com/en-us/articles/intel-parallel-composer-
parallelization-guide.

OpenMP* technology A specification defined by OpenMP.org to support shared-
memory parallel programming in C/C++ and Fortran
through the use of application programming interface (API)
and compiler directives. For more information, see [2]
under Related Publications.

Intel® C++ language
extensions

The Intel® C++ compiler language extensions provide a
simple and easy way to get started with OpenMP*.

Intel® Threading
Building Blocks (Intel®
TBB)

A template-based run-time library providing a parallel
programming model for C++ code. The library uses tasks
to abstract threads. TBB simplifies multi-threading for
scalable, multi-core performance. For more information,
see [1] under Related Publications.

Use of a threaded
library

The Intel® Integrated Performance Primitives (Intel® IPP)
library provides a comprehensive set of application
domain-specific functions. The library adds scalable
parallelism to your application through the use of functions
tuned and threaded for multi-core systems.

4 User and Reference Documentation
You can access Intel® Parallel Studio documentation:

• From the Windows* Start menu:
⎯ Choose Intel Parallel Studio > Parallel Studio Documentation

• From the main menu in Microsoft Visual Studio*:
⎯ Choose Help > Intel Parallel Studio > Parallel Studio Help

• From within Visual Studio:
⎯ Press F1 from any Intel® Parallel Studio window or toolbar to display context-

sensitive help

NOTE: The first time you invoke help, it might take several minutes before Visual Studio
indexes and displays the help contents.

Getting Started Guide 7

http://software.intel.com/en-us/articles/intel-parallel-composer-parallelization-guide
http://software.intel.com/en-us/articles/intel-parallel-composer-parallelization-guide

Getting Started with the Intel® Parallel Studio

 Document Number: 321166-001US 8

• From the knowledge base on the web:
⎯ http://software.intel.com/en-us/articles/intel-parallel-studio/

Parallel Studio Component Getting Started Guides:

• Intel® Parallel Amplifier Getting Started Guide
• Intel® Parallel Composer Getting Started Guide
• Intel® Parallel Inspector Getting Started Guide
• Intel® Parallel Advisor Lite Getting Started Guide

You can access the Getting Started Guides:

• From the knowledge base on the web:
⎯ http://software.intel.com/en-us/articles/intel-parallel-studio/

• From the Windows* Start menu:
⎯ Choose Intel Parallel Studio > Getting Started

Related Publications

You are strongly encouraged to read the following books for in-depth understanding of
threading. Each book discusses general concepts of parallel programming by
explaining a particular programming technology:

Intel® Threading
Building Blocks

[1] Reinders, James. Intel Threading Building Blocks: Outfitting
C++ for Multi-core Processor Parallelism. O’Reilly, July 2007
(http://oreilly.com/catalog/9780596514808/)

OpenMP*
technology

[2] Chapman, Barbara, Gabriele Jost, Ruud van der Pas, and
David J. Kuck (foreword). Using OpenMP: Portable Shared
Memory Parallel Programming. MIT Press, October 2007
(http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=
11387)

http://software.intel.com/en-us/articles/intel-parallel-studio/
http://software.intel.com/en-us/articles/intel-parallel-studio/

Legal Information

Legal Information
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY
THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS,
INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED
FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE
PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must
not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities
arising from future changes to them. The information here is subject to change without notice. Do not finalize a
design with this information.
The products described in this document may contain design defects or errors known as errata which may cause
the product to deviate from published specifications. Current characterized errata are available on request.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your
product order.
Copies of documents which have an order number and are referenced in this document, or other Intel literature,
may be obtained by calling 1-800-548-4725, or by visiting Intel's Web Site.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each
processor family, not across different processor families. See http://www.intel.com/products/processor_number
for details.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Atom, Centrino Atom Inside, Centrino Inside, Centrino
logo, Core Inside, FlashFile, i960, InstantIP, Intel, Intel logo, Intel386, Intel486, IntelDX2, IntelDX4, IntelSX2,
Intel Atom, Intel Atom Inside, Intel Core, Intel Inside, Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead.
logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash,
Intel Viiv, Intel vPro, Intel XScale, Itanium, Itanium Inside, MCS, MMX, Oplus, OverDrive, PDCharm, Pentium,
Pentium Inside, skoool, Sound Mark, The Journey Inside, Viiv Inside, vPro Inside, VTune, Xeon, and Xeon Inside
are trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2009, Intel Corporation. All rights reserved.

Microsoft product screen shot(s) reprinted with permission from Microsoft Corporation.

Getting Started Guide 9

http://www.intel.com/
http://www.intel.com/products/processor_number

	Getting Started with the Intel® Parallel Studio
	1 About the Sample Application
	2 Creating Parallel Programs Using the Intel® Parallel Studio
	Figure 1. The Intel® Parallel Studio Workflow
	Step 1. Find Where to Start Parallelizing
	Step 2. Introduce Threads, Compile and Debug
	Step 3. Find Threading and Memory Errors
	Step 4. Tune

	3 Select a Threading Technique
	4 User and Reference Documentation
	Related Publications

	Legal Information

